
A Dynamic Resource Demand Analysis Approach for Stream

Processing Systems

Johannes Rank, Andreas Hein, Helmut Krcmar
Technical University of Munich

85748 Garching, Germany
{johannes.rank, andreas.hein, helmut.krcmar}@tum.de

Abstract

Systems that provide real-time business insights based
on live data, so-called Stream Processing Systems
(SPS), have received much attention in recent years.
In many areas such as stock markets or surveillance, it
is essential to process data immediately and react ac-
cordingly. As the processing of real-time data is at the
heart of SPS, their performance in terms of latency,
throughput, and resource utilization constitutes a cru-
cial role. Traditional performance and benchmarking
approaches for SPS usually focus on the throughput
and latency, trying to answer the question of which
engine processes the incoming events fastest. How-
ever, neglecting the corresponding resource utilization
provides only a limited and sometimes even mislead-
ing view on their actual performance. Depending on
the use-case, an engine that achieves faster process-
ing results at the cost of higher memory utilization
is not always best suited, which can be shown based
on the example of IoT edge computing devices with
limited resources. For this reason, we developed a dy-
namic performance approach to analyze the resource
demands of an SPS. The approach yields fine-grained
performance metrics based on the individual process-
ing steps of the SPS and without requiring any knowl-
edge of the actual source code. More-over it takes the
whole system (engine and streaming application) into
account. Since, we do not rely on code instrumen-
tation or language-specific profiling techniques but
instead, use the dynamic tracing capabilities of the
Linux kernel, we can support a broad range of differ-
ent SPSs. We evaluate our approach by inspecting the
CPU performance of Apache Flink while performing
the Yahoo streaming benchmark.

1 Introduction

While there is much work in analyzing the perfor-
mance based on throughput and latency, there is cur-
rently a lack of proper resource-based evaluations such
as CPU or memory. We argue that evaluating and
benchmarking performance for different SPSs with-
out taking resource utilization into account can lead
to distorted or even misleading results. As an ex-
ample, the stream processing engine (SPE) Apache

Flink has a pipelining architecture that usually re-
quires a fair number of buffers to allow stable pro-
cessing. These buffers have to be held in memory in-
creasing its utilization. Spark’s Resilient Distributed
Datasets (RDDs), on the other hand, are kept in mem-
ory by default, but can also be configured to be held
on disk in order to save memory utilization [4]For use-
cases such as stream processing on edged-computing
devices, an SPE that requires less memory at the
cost of a slightly increased latency could offer the
better cost-performance ratio. This illustrative ex-
ample demonstrates why resource considerations for
the whole SPS (SPE and streaming application) are
important to provide a complete performance picture.
To tackle this problem, we introduce a novel resource-
centered performance evaluation approach that yields
fine-grained resource metrics. In this work, we ex-
clusively focus on the CPU consumption, but other
resource considerations will be integrated into future
work. The approach further provides the following
capabilities:

� In-depth metrics analysis: Resource metrics are
collected for the individual processing tasks.

� Full scope: The whole system comprised of SPE
and application is monitored.

� Dynamically applicable: The approach can be ap-
plied to running SPSs without a restart.

� Production safe: The tools and programs used as
part of this approach are non-disruptive and can
also be applied in production scenarios.

� SPE independent : The approach support a broad
range of SPS.

� No domain knowledge required : No knowledge
about the SPE or source-code is required.

� Stable metrics: The approach is resistant to tem-
porary performance degradations caused by one-
time effects or system errors.

2 Related Work

The Yahoo streaming benchmark (YSB) [2] has re-
ceived much attention from both practitioners and re-
searchers. The benchmark features a full data pipeline

in which advertisement events are first consumed from
Kafka, joined with campaigns obtained from a redis
database, grouped by campaigns via a windowing task
and finally stored back to redis. The benchmark in
its original form only focuses on latency and through-
put. Van Dongen/Van den Poel [5] extended the YSB
to provided more accurate latency measurements. In
addition, they monitored the CPU utilization on the
container level. While this is a first step towards pro-
viding a more extensive view on the performance be-
havior, the monitoring is still conducted on a high
level providing no insights which streaming tasks con-
sume the most CPU. Furthermore, CPU utilization,
as reported by top, is generally considered to be an
inaccurate metric since stall-cycles are interpreted as
“busy” despite the fact that the application is waiting.

3 Approach

What makes a uniformly applicable performance ap-
proach possible in the first place is the fact that all
SPSs are based on a common generic architecture.
They usually consume data from a known source (e.g.
Twitter events) via a socket connection. In addition
SPSs are usually comprised of a programming API
that is represented by the streaming application and
a streaming engine (SPE) that is responsible for man-
agement tasks such as orchestration or fault tolerance
[3]. To provide a complete view on the resource con-
sumption, our resource analysis needs to take all three
components (Workload, application and SPE) into ac-
count. Figure 1 illustrates our approach.

Phase 1 The actual process tree of an SPS depends
on the engine itself (e.g. Spark/Flink) as well as its
configuration [1]. In order to identify what processes
need to be traced, the first step in our approach is to
obtain all process IDs (PIDs) that are part of the SPS.
We developed the ScopeAnalyzer.sh as a simple Linux
shell script that identifies the target PIDs based on
process names. For emerging SPEs that are not yet
covered by the tool, the ScopeAnalyzer provides an
option to trace and identify new processes that were
created via exec() during the startup of the engine.

Phase 2.1 In order to yield accurate performance
metrics, we need to trace the workload that was actu-
ally consumed by the application. Here we make use
of the two assumptions “known sources” and “socket
connection”, as described in section 3. We imple-
mented a bpftrace program called workload trace.bt.
It uses the kretprobe:sock recvmsg to count the bytes
consumed by a defined set of PIDs and prints the sum
together with its process name. The result is filtered
for our known source e.g. Kafka Fetcher in case of
the YSB. bpftrace is a high level language for eBPF,
that was added to the Linux kernel in release 3.15 and
allows to process events in kernel space. Hence, eBPF
is very efficient and supported by most Linux systems.

Phase 2.2 During observation, we access perfor-

mance monitoring counters (PMC) to obtain detailed
CPU metrics for the target PIDs. Here, we make use
of the perf stat command to count the cycles and in-
structions used by the different processes. Access to
PMC information costs practically no performance.

Phase 2.3 For the identified PID(s) of the stream-
ing application the CPU is sampled for stack traces.
Each stack itself provides information which code path
was executed (e.g. redis join), while the number of
samples gives an approximation how often these code
paths were executed and hence how much CPU was
demanded. This way we get detailed insights into the
inner workings of the application and the performance
of its processing tasks without requiring any knowl-
edge about the actual source code.

Phase 3 The stack count.raw contains one entry
for every single stack trace that was sampled during
the observation. The stack fold.bt script aggregates
this information to show only distinct code paths and
the number of their occurrences. In addition, we gen-
erate a FlameGraph. FlameGraphs were invented by
Brendan Gregg and provide an easy way to visualize
stack traces and to show hot code paths to the user.
Both scripts are available via his git repository1.

Phase 4 During the result generation, two reports
are created. The absolute demand provides CPU met-
rics for the whole SPS grouped by SPE and applica-
tion. In addition the Instructions per byte are calcu-
lated based on the workload measured in step 2.1.

4 Experiment

We applied our approach while running the YSB for
Apache Flink in a single node configuration. The pur-
pose of this experiment is to provide an illustrive ex-
ample how the approach works and how detailed the
metrics are. We configured the benchmark to run with
2k and 4k events/second. The testing environment
was a 12 vCPU machine based on a Intel Xeon E-2620.
Phase 1 yielded three PIDs that correspond to the
SPE (client.cli + cluster) as well as the application
(taskmanager). The workload collected during phase
2.1 was similar to the values reported by Flink’s mon-
itoring dashboard. The load for running 2k event/s
was about 1.78 GB/h. Phase 2.2 showed that the CPU
demand of the SPE and application scaled well with
the 4k workload increase. As depicted in Table 1 the
cluster process itself did not consume additional CPU,
which is expected since no changes to the cluster were
performed. The instructions required by the stream-
ing application increased by 105%. The CPU profiling
in phase 2.3 revealed that the streaming application
spent only 75.1% of its CPU-time in a Java thread.
The remaining time was spent for other tasks such as
waiting for glibc. Overall the most CPU was required
for consuming events from Kafka (44.6%), followed by
the Redis join (24.6%), while the filter operation re-
quired so little CPU that it did only appear in the 4k

1https://github.com/brendangregg/FlameGraph

https://github.com/brendangregg/FlameGraph

PMC
Measurement

Identify
Process Scope

2.2

1

Scope
Analyzer.sh

PID PID

TID

TID

perf stat -p

Workload
Identification

2.1

workload_
trace.bt

SPS Stack
-trace sampling

2.3

stack_
count.bt

Stackfold &
FlameGraph

3

stack_fold.bt &
FlameGraph.pl

Result
Generation

process
trees.json

TID

stack
count.raw

pmc
cpu.data

socket
load.data

@[pthread_mutex_unlock+0
 Unsafe_Park+172

 Lsun/misc/Unsafe;::park+170
 Lakka/dispatch/forkjoin/ForkJoinPool

 start_thread+217]: 1
@[Ljava/lang/String;::charAt+69

 Ljava/io/StringReader;::read+196
 Lorg/apache/flink/streaming/api/

 tasks/OneInputStreamTask$Stream
 start_thread+217]: 1

Performance counter stats
 for process id 'XXX':
 74742.28 msec cpu-clock

890316 context-switches
18136 cpu-migrations

 260 page-faults
16208304507 cycles
11157220571 stalled-frontend
83811857778 stalled-backend
13350839291 instructions

Instruction per Byte Demand

@[New I/O worker]: 121020
@[Flat Map -> Fil]: 631210
@[Kafka Fetcher f]: 122772567

Flame Graph Search ic

Lorg/ap..
:..

:..

::re..

Lorg/apache/flink/streaming/runtime/tasks/Op..

::processElement+324

:..

::at..

Lorg/apache/flink/streaming/api/operators/C..

::poll+148

..

call_stub+136

:..

:..

::se..

::re..

..

Lorg/apache/flink/streaming/runtime/tasks/O..

:..

..

::collect+64

::collect+68

::collect+64

:..

::se..

::c..

start_thread+217

..

Ljava/net/Socket

::n..

JavaCalls::call_virtual(JavaValue*, Handle, KlassHandle, Symbol*, Symbol*, Thread*)+100

..

Interpreter+11421

..

Lo..

..

Lorg/apache..
Lorg/apache..

Lorg/apache/flink/streaming/runtime/io/StreamTaskNetworkInput
Lorg/ap..

..

..

:..

java_start(Thread*)+336

::run+264

::pol..

Lbaproj/StreamingJob$TupleGenerator

::writeTo->..

Lbaproj/StreamingJob$RedisJoinBolt

::poll+320

Lorg/apache/flink/streaming/api/operators/StreamFlatMap

Lorg/apache/flink/streaming/api/operators/C..

writev+77

::poll+300

::re..

::flatMap+68

..

::co..

Lorg/apache/flink/streaming/api/operators/S..

L..

:..

::processInput+88

::poll+576

::re..

::re..

::sendCommand+80

Lsun/ni..

:..

::collect+128

connect+75

::pollSelec..

::..

::collect+104

::get+180

::pol..

..

::de..

..
Lorg/apache/flink/streaming/runtime/tasks/StreamTask$$Lambda$163/636210..

Lorg/apa..

::connect->Ljava/net/Abstract..

::processElement+224

::pushToOperator+244

::pushToOperator+244

:..

::write+0

::collect+68

L..

..

..

::de..

Lo..

p..

::collect+128

..

..

:..

::<init>+180

::wr..
..

In..

..

..

::collect+68

Lorg/apache/flink/streaming/api/operators/Co..

..

..

Lorg/apache/flink/streaming/runtime/tasks/O..

::socketConnect+194

..

JavaCalls::call_virtual(JavaValue*, KlassHandle, Symbol*, Symbol*, JavaCallArguments*, Thread*)+639

::connect+72

::transmitSends..

::poll+0

::run+76

..

::pu..

Lredis/clients/jedis/Connection

thread_entry(JavaThread*, Thread*)+128

::runMailboxLoop+236

::co.. L..

::writev+0

..

..

:..

..

::flatMap+152

::write->Lj..

::co..
..

::re..

:..

::flatMap+528

::emi..

..

Lbaproj/StreamingJob$RedisJoinBolt

::em..

..

..

::..

::em..

Lorg/json..

::pa..

JavaThread::run()+746

::processElement+208

::write+0

::..

..

send+108

Lredis/clients/jedis/BinaryClient

..

::..

Lorg/apache/flink/streaming/api/operators/St..

..

::collect+68

Lorg/apache/kafka/clients/consumer/KafkaCo..

:..

Ljava/net/PlainSocketImpl

Lorg/apache/flink/streaming/runtime/io/StreamTaskNetworkInput

::se..

Lbaproj/StreamingJob$TupleGenerator

Lorg/apache/flink/streaming/connectors/kafk..

::sendCommand+348

Interpreter+11421

::processElement+124

Ljava/net/SocksSocketImpl

..

..

::connect->Ljava/net/Abstract..

::poll+320
:..

::writev0+203
..

::collect+68

::re..

Lorg/apache/flink/streaming/runtime/tasks/mailbox/MailboxProcessor

::de..

::runMailboxStep+104

::emitNext+224

..

::collect+64

..

:..

::connect+504

..

Lorg/apache/flink/streaming/api/operators/C..

..

Lorg/apache/flink/streaming/runtime/tasks/O..

Lorg/apache/flink/streaming/api/operators/C..

:..

::poll+0

..

:..

..

Lorg/apache..

::doConnect+28

::nextV..

:..

..

..

:..

..

Lorg/apache/flink/streaming/api/operators/Ti..

Interpreter+11421

..

L..
::run..

::write+408

Interpreter+11421

::send+96

Lorg/apache/flink/streaming/runtime/io/StreamOneInputProcessor

Lorg/apache/k..

::se..

::connect+92

Lredis/clients/jedis/Jedis

Lsun/ni..

L..

..

Lredis/clients/jedis/Connection

:..

:..

JavaThread::thread_main_inner()+512

:..

..

Lorg/apache/flink/streaming/runtime/tasks/mailbox/MailboxProcessor

..

::write->Ls..

::re..

In..

Lorg/apa..

..

::de..

..

::execute+160

Lorg/apache/flink/streaming/runtime/tasks/OneInputStreamTask$St..

Lsun/ni..

::collect+68

Lorg/apache/kafka/clients/consumer/KafkaCo..

..

::emitRecord+200

:..

Lorg/apache/flink/streaming/api/operators/Co..

::pollForFetche..

..

::connectToAddress->Ljava/net..

::runDefaultAction+72

Lorg/apache/flink/streaming/runtime/tasks/O..

::collect+128

::..

Lorg/json..

..

..

Lorg/apache/flink/streaming/runtime/tasks/Op..

::re..

::re..

Lorg/apache/flink/streaming/runtime/tasks/O..

:..

..

Lorg/..

::em..

In..

..

Lor..

..

Lorg/apache/flink/streaming/runtime/tasks/Op..

::co..

..

..

::processElement+152

::flatMap+68

..

::get..

::flatMap+284

In..

::<init..

::co..

..

::..

::processInput+84

::re..

..

Lcommon/RedisAdCampaignCache

Lorg/apache/flink/streaming/api/operators/S..

Ljava/lang/Thread

JavaCalls::call_helper(JavaValue*, methodHandle*, JavaCallArguments*, Thread*)+3189

..

Lredis/clients/jedis/Connection

..

..

..

:..

Lorg/apache/flink/streaming/runtime/tasks/O..

::pushToOperator+244

Lorg/apache/kafk..

::co..
Lorg/apache/flink/streaming/runtime/tasks/StreamTask

::se..

::re..

:..

::..

::poll+92

flame
graph.svg

results.sh

4

Serialize

Filter

Join

Group

Persist
360 ins/b 450 ins/b

60 ins/b 300 ins/b

370 ins/b

stack_folded.data
@[pthread_mutex_unlock+0

 Unsafe_Park+172
 Lsun/misc/Unsafe;::park+170

 Lakka/dispatch/forkjoin/ForkJoinPool
 start_thread+217]: 120

@[Ljava/lang/String;::charAt+69
 Ljava/io/StringReader;::read+196
 Lorg/apache/flink/streaming/api/

 tasks/OneInputStreamTask$Stream
 start_thread+217]: 165

Absolute Demand

Stream
Engine

133.5 bn Instr

App/
Serial

50.5 bn Instr

App/
Join

60 bn Instr

O
u
t
p
u
t

Figure 1: Performance Approach Tool Chain

1 2 3 4 5 6
0

25

50

75

100

125

150

175

200

In
st

ru
ct

io
n

s

Kafka Consmpt.
Redis Join

Tok + Fin + Outp

Figure 2: Relative CPU instructions for processing 1 Byte

test (0.02%). The overhead caused by the sampling at
999 Hz for 1h was neglectable during the monitoring
run itself. Only after the sampling was completed a
full core was consumed to write the results to disk.
Hence, the metric collection itself was not affected,
but a production environment would need spare re-
sources. For calculating the CPU demands per byte
we combine the sampled stack traces with the con-
sumed instructions and put them into relation to the
traced workload. As shown in Figure 2, this allows
us to calculate the CPU instructions for processing a
single byte from Kafka grouped by tasks (Tokenizer
+ Finalizer + Output summarized). Overall the ap-
proach yielded a very detailed performance picture of
the application in which only the filter was omitted
due to its neglectable impact on the CPU.

2k Instr 2k IPC 4k Instr 4k IPC
Application 810 bil 0.73 1661 bil 0.75
SPE/Cluster 13.5 bil 0.29 12.5 bil 0.29
SPE/Client 1.0 bil 0.24 1.9 bil 0.23

Table 1: Avg CPU Instructions per hour

5 Conclusion

Streaming analytics has increased the need for re-
source focused performance evaluations. It becomes
increasingly important to process data streams not
only fast but also efficiently in terms of CPU uti-
lization. In this paper we proposed an approach to

dynamically inspect the CPU demands of an SPS at
a fine-grained level. This way we can provide accu-
rate and reliable performance accounts for the differ-
ent components of an SPS (engine vs. application) as
well as the individual processing tasks of the stream-
ing application. We accomplish this without requir-
ing any knowledge about the source code and without
relying on performance tools that are limited to a cer-
tain SPE. This allows us to perform CPU performance
evaluations in a uniform way. We think that using
our approach has great potential when benchmark-
ing SPEs, to provide an additional view. With this
approach we can not only show how efficient an SPS
works while achieving a certain throughput/latency
result, but also how well individual processing tasks
perform between the SPEs. This way benchmark re-
sults become more transparent to the user. For this
reason, we plan to integrate our approach into the
YSB and to add add memory measurements as an
additional resource consideration.

References

[1] G. Hesse and M. Lorenz. “Conceptual survey on
data stream processing systems”. In: IEEE 21st
Intern. Conference on Parallel and Distributed
Systems (ICPADS). 2015, pp. 797–802.

[2] S. Chintapalli et al. “Benchmarking Streaming
Computation Engines: Storm, Flink and Spark
Streaming”. In: 2016 IEEE International Paral-
lel and Distributed Processing Symposium Work-
shops (IPDPSW). 2016, pp. 1789–1792.

[3] S. Kamburugamuve and G. Fox. “Survey of dis-
tributed stream processing”. In: Bloomington:
Indiana University (2016).

[4] O. Marcu et al. “Spark Versus Flink: understand-
ing performance in Big Data analytics frame-
works”. In: CLUSTER 2016. 2016, pp. 433–442.

[5] G. Van Dongen and D. E. Van den Poel. “Eval-
uation of Stream Processing Frameworks”. In:
IEEE Transactions on Parallel and Distributed
Systems (2020).

	Introduction
	Related Work
	Approach
	Experiment
	Conclusion

