
Catching Up with State of the Art Continuous Integration Pipelines

in Palladio — An Experience Report

Stephan Seifermann
stephan.seifermann@kit.edu

Karlsruhe Institute of Technology

Sebastian Krach
krach@fzi.de

FZI Research Center for Information Technology

Abstract

Palladio is a fairly large research project providing
various software artifacts. The large amount of main-
tained projects makes Continuous Integration (CI) vi-
tal. However, CI is more useful if the source of a de-
tected problem becomes clear. The earlier CI infras-
tructure did often not allow tracing back problems
and even made adding new projects challenging. In
2018, we decided to completely rebuild the whole CI
infrastructure and the organization of source code to
catch up with the state of the art. Two years later, we
can now report on our experience in migrating such
large projects as well as on the benefits of spending
the effort in this migration.

1 Introduction

Palladio [2] is still a growing research project despite
its age. Software architects use the Palladio Bench to
predict the performance and other quality properties
of their envisioned architectures using a decent set
of various Eclipse extensions. These extensions trace
back to many smaller, individual projects maintained
by researchers at different universities. Continuous
Integration (CI) is one building block to monitor all
these projects for problems and report them.

The CI infrastructure used till 2018 struggled with
providing useful feedback to developers. It could suc-
cessfully identify compilation issues and missing de-
pendencies but reported them in a incomprehensible
way. Setting up the build environment locally to re-
produce the issue was not feasible either. Addition-
ally, creating the build management descriptions re-
quired a deep understanding of the build technology,
which hindered the integration of new projects into
CI. The deprecation of the used build management
technology Buckminster was the last straw before we
decided to change our CI process.

We collected the issues of the existing CI infras-
tructure and decided to spend considerable effort in
catching up with the state of the art: We migrated all
shipped source code from SVN to Github to increase
visibility and ease code contributions. We switched
to the build management tool Maven Tycho, which
eases reproducing issues locally and provides clearer
error messages. The build descriptions became part

of the repository itself and we reduced them to a bare
minimum to ease setting up builds for new projects.

As of now, we used the new infrastructure for about
two years. CI works as expected and we successfully
managed to do two Palladio releases. In this paper, we
report on this new infrastructure and our experiences
in migration and daily usage.

2 Requirements for Infrastructure

We collected requirements for the new CI infrastruc-
ture to define an appropriate solution. The require-
ments mostly stem from shortcomings of the previous
CI infrastructure.

R1) Comprehensible Error Messages: The CI should
provide all details required to identify a problem
in reported error messages.

R2) Locally Reproducible Builds: Developers should
be able to reproduce build results and predict
them by executing the build instructions locally.

R3) Support External Contributions: The Palladio
source code was located in a semi-public SVN
repository that required a local account on the
SVN server. The new infrastructure should allow
external users to suggest code contributions.

R4) Validation of External Contributions: Before
spending effort in reviewing external contribu-
tions, the CI should ensure that the contribution
compiles and passes defined tests.

R5) Autonomous Build Definitions: The integration
of builds into CI should no longer require admin-
istrative but only regular developer permissions.

R6) Resilience to Eclipse Downtimes: Builds should
not be affected by downtimes of the Eclipse up-
date sites, which happened often in the past.

We do not mention obvious requirements such as no
use of deprecated technologies or the ability to build
all artifacts required for Palladio.

3 Overview on CI Infrastructure

In this section, we report on how our new CI infras-
tructure meets the requirements of the previous sec-
tions. An overview on our infrastructure is given in
Figure 1. We explain the components and their rela-
tion in the following.



Github Jenkins

Push Event
Repo Event

Status

Instructions

Artifacts

Jenkins Slaves Webserver

Update Site

Proxied 
Dependencies

Figure 1: Overview on CI components and exchanged information.

To improve error messages (R1) and allow local
builds (R2), we switch from the build management
tool Buckminster1 to Maven Tycho2. Developers now
only have to have a recent Maven version to build
a project. To ease build definitions, we introduce
a parent POM hosted at Maven Central that con-
tains all necessary build descriptions. It is only neces-
sary to specify dependencies of the project in a target
platform. Remaining tasks like building Xtend code,
source features and update sites are already config-
ured. By using POM-less builds3, there is almost no
overhead for specifying the build compared to pure
development inside of Eclipse.

To support external code contributions (R3), we
migrated all Palladio projects from our institutional
SVN repository to Github. The challenge was to not
only migrate the code but also branches, tags and the
history. Especially, old projects like the metamodel
have a huge history with many authors. We created a
python script to automate as many tasks as possible.
The source code is now visible on Github and external
users can submit code contributions by pull requests.

To verify external contributions (R4) as well as in-
ternal contributions, we use a Jenkins extension that
detects and registers hooks in Github repositories of
our Github organization. We chose Jenkins over other
CI solutions because we are already competent with
it. The hooks notify the build server hosted at our in-
stitute about changes and triggers a build. The actual
build is dispatched to our build slaves hosted at our
institute and in bwCloud4 to speed up parallel builds.
The execution of the Maven-based build takes place
in a Docker container to isolate build jobs on the same
slave. The idea of using Docker containers for build
tasks has already been presented earlier by Düllmann
[3] as well as by Reed et al. [4]. If the build suc-
ceeds, Jenkins publishes the build result to Github.
We configured all master branches to not accept a
push. Instead, all contributions require pull requests
and therefore are checked before merging into master.

To ease defining build jobs (R5), we use predefined
build pipelines that developers only have to parame-
terize. The pipeline covers execution of Maven build

1https://eclip.se/h5
2https://eclip.se/h4
3https://eclip.se/h3
4https://www.bw-cloud.org

jobs, collection of quality metrics and deployment of
the produced update site to our web server. There are
sensible defaults, so the only information required to
integrate a new build job is providing the location of
the artifacts to deploy. Developers create a Jenkinsfile
containing this information in the repository and the
build server automatically creates the build job. This
also considers pull requests and branches but only the
master branch is deployed by default.

To improve resilience to downtimes of Eclipse up-
date sites (R6), we proxy requests and redirect them
to the more reliable mirror of the University of
Erlangen–Nuremberg. We inject the proxy configu-
ration via Maven settings on the build server. In con-
trast to hosting a local mirror of the Eclipse update
sites, this approach saves storage space but still re-
duces issues because of unavailable update sites. Ad-
ditionally, the URLs in the target platforms remain
the same and local builds still work as expected.

4 Reusable Building Blocks

When realizing the previously described infrastruc-
ture, we had to work around limitations of existing
tools that were hindering in our context. Therefore,
we created several tools that can be reused in other
contexts than Palladio.

Target Platform Mechanisms of Tycho were not
as modular as required, i.e. composing a target plat-
form of multiple target platform definitions was not
possible. Additionally, fixed version numbers are re-
quired, which are difficult to define if we use rapidly
changing nightly builds. Therefore, we developed a
Maven extension5 that merges multiple target plat-
forms into one, updates version numbers to the latest
available and provides filters to switch between nightly
and release dependencies. The benefit is that develop-
ers only have to define specific dependencies of their
projects rather than dependencies to Eclipse. Instead,
the extension can merge one of our predefined tar-
get platforms for various Eclipse versions6. We favor
the use of dedicated target platforms to only speci-
fying repositories with automated artifact resolution
because we plan to realize reproducible release builds
with fixed artifact versions.

5https://git.io/JUmRa
6https://git.io/JUmRj

https://eclip.se/h5
https://eclip.se/h4
https://eclip.se/h3
https://www.bw-cloud.org
https://git.io/JUmRa
https://git.io/JUmRj


Ecore Code Generation is essential to our
projects because many define Ecore meta-models and
rely on generated source code for handling model in-
stances. The original EMF workflow supports cus-
tomizations on a method-level granularity by replac-
ing and annotating parts of the generated source code.
For large meta-models, maintaining these customiza-
tions quickly becomes cumbersome. The Generation
Gap pattern [1] describes a solution by separating cus-
tom from generated code through subclassing. Ini-
tial support for this pattern is provided through the
Ecore code generation component of the Eclipse Mod-
eling Workflow Engine (MWE2)7. We provide com-
prehensive support for working with the generation
gap as part of a MWE library8. We ensure trans-
parent behaviour of depending code by renaming the
generated parent class while reserving the meta-model
class name for the custom subclass. Any reference,
including generated factories, thereby correctly refer-
ences the customized class. We further integrated the
workflow execution in a convention-over-configuration
manner as part of the shared parent POM. If the de-
veloper provides suitable modeling workflow descrip-
tions at a predefined location, the respective work-
flows are executed at the appropriate phase of the
maven build. Consequently, we engage developers to
only commit their code customizations, allowing our
CI to ensure the consistency between meta-model and
the generated code artifacts.

Build Pipelines predefined by us are suitable to
most of our projects but there are some which have
different requirements, e. g. use Gradle instead
of Maven. In order to minimize repetitive Jenk-
ins pipeline definitions, we opted for a modular ap-
proach based on the Jenkins Modular Pipeline Library
(MPL)9. MPL allows us to define the pipeline as se-
quence of abstract stages and provide customizations
for each stage as separate module. The modules pro-
vide support for dynamic composition, thereby giving
us means of fine granular extensibility. For instance,
the composition allows us to reuse the same module
for setting up the build environment in isolated docker
containers, and exchange the module calling the build
tool inside the container. We implemented an exten-
sion10 to the Groovy-based Jenkinsfile DSL to provide
an intuitive way of selecting and configuring the re-
quired extensions to the default pipeline.

5 Experience Report

We have been using the presented CI infrastructure
for about two years. The overall experience is good.
Especially, reproducing build errors locally or even be-
ing able to test the outcome of the build process before

7https://eclip.se/h6
8https://git.io/JU3bX
9https://git.io/JU3At

10https://git.io/JU3xo

a commit is beneficial and improves confidence of ex-
perienced and novice developers. Novice developers
also start defining builds for their projects, which has
rarely happened before. The review process of contri-
butions via pull requests and the visualization of build
results of these pull requests was an enabler for involv-
ing more and new people in the development. Expe-
rienced developers benefit from easier reviews while
novice developers get feedback to their contributions.

However, there is still a need for dedicated CI ex-
perts that are responsible for monitoring and main-
taining the infrastructure. The effort of these experts
usually boils down to installing updates and provid-
ing new target platforms and reusable Maven descrip-
tions in case of changes of the Java or Eclipse version.
Giving new developers a short introduction is another
important task because there is still a lack of satisfy-
ing documentation of these tools. We certainly have
to improve in this field.

In summary, we believe that our effort was well
spent. However, the effort was not neglectable. The
migration from SVN to Github and from Buckminster
to Maven took a student researcher about half a year.
Our previous strategy of migrating projects once they
change did not work at all. Such migrations require
dedicated persons being in charge of the process.

6 Conclusion

In this paper, we presented the CI infrastructure of
Palladio how it improved the overall development pro-
cess. The use of state of the art technology in the
CI pipeline enables fast feedback cycles, code reviews
and comprehensible build results. Adding a project to
CI is now possible without deep understanding of the
build process and without administrative privileges.

Practitioners can benefit from the reusable build-
ing blocks of our CI pipeline. Other research projects
can consider our experiences when reasoning about
spending effort in their CI infrastructure.

As part of future work, we plan to improve the doc-
umentation of all tools and the overall process. We
also would like to define a concept for creating repro-
ducible release builds based on target platforms.

References

[1] M. Fowler. Domain Specific Languages. 1st.
Addison-Wesley Professional, 2010.

[2] R. H. Reussner et al. Modeling and Simulating
Software Architectures – The Palladio Approach.
Cambridge, MA: MIT Press, 2016. 408 pp.

[3] T. F. Düllmann. Don’t just watch the containers
pass by: How we (plan to) use Docker to stream-
line the Kieker development process and infras-
tructure. Presentation at SSP’17. 2017.

[4] N. Reed et al. Automating the Build Pipeline
for Docker Containers. Presentation at SSP’17.
2017.

https://eclip.se/h6
https://git.io/JU3bX
https://git.io/JU3At
https://git.io/JU3xo

	Introduction
	Requirements for Infrastructure
	Overview on CI Infrastructure
	Reusable Building Blocks
	Experience Report
	Conclusion

