
Towards a Taxonomy for Applying Behavior-Driven Development (BDD)

David Faragó1, Mario Friske2, Dehla Sokenou3

1QPR Technologies, Karlsruhe 2Friske Consulting, Berlin 3GEBIT Solutions GmbH, Berlin

Abstract. Behavior-Driven Development (BDD) is
a topic currently much talked about, especially in the
agile community. Small scale examples of BDD sug-
gest an intuitive and easy use, but experience shows
that in practice, especially large projects, its applica-
tion becomes elaborate and challenging. This paints
an inconsistent picture about BDD. So, what are the
requirements for a successful application of BDD?

We have identi�ed, discussed, and classi�ed the
core aspects of applying BDD. Depending on the ap-
plication context, an aspect can speak for or against
the use of BDD. These aspects and their pro and
contra arguments are this article's main contribution.
Everyone can use these aspects to decide whether and
how to use BDD in their individual project context.

1 What is BDD today

BDD is a software development method derived from
Test-Driven Development (TDD). It is an outside-in
software agile development methodology: it focuses
on satisfying the needs of stakeholders by using user
scenarios as starting point for the implementation.
Furthermore, it provides a ubiquitous speci�cation
language, which guarantees that all stakeholders can
communicate with each other � avoiding the frequent
misunderstandings between domain experts and de-
velopers. Finally, by making the speci�cations semi-
formal and directly executable, tools can check the
speci�ed scenarios automatically, thereby promoting
continuous validation and unambiguousness of speci-
�cations.

A widely accepted speci�cation language is
Gherkin, with Cucumber as its corresponding BDD
tooling. In cases when BDD is used for testing pur-
poses only, the method is sometimes called Behavior-
Driven Testing (BDT) to draw a distinction.

2 Discussions on BDD within our AK

Our working group �Testing of Object-Oriented Pro-
grams / Model-based Testing� (AK TOOP) is part of
the GI's professional group �Test, Analysis and Ver-
i�cation� (TAV). Usually, we meet in person during
TAV events and continuously work on interesting top-
ics between meetings using online collaboration tools.

In our last group meetings, we focused on the rela-
tion between Model-based Testing (MBT), Keyword-
Driven-Testing (KDT) and Behavior-Driven Develop-
ment (BDD), see [2] and [3]. These discussions iden-
ti�ed some questions and aspects about introducing
and running BDD that need further clari�cation.

Aspects of BDD have already been discussed else-
where: [9] lists six aspects that are relevant but very
general and mainly cover speci�cations and processes.
[5] goes more into detail and touches the technical ap-
plication and the ROI of BDD, but does not cover all
aspects we investigate, does not structure the aspects
clearly.

An empirical study in [8] lists ten quality attributes
as relevant for BDD scenarios: concise, estimable,
feasible, negotiable, prioritized, small, testable, un-
derstandable, unambiguous, and valuable. These at-
tributes are from other types of requirement speci�ca-
tions (like use cases or user stories) and are all covered
by our aspects. The literature review [4] isolated six
major aspects of BDD, which we also cover: ubiqui-
tous language, requirements, acceptance tests, tools,
collaboration, and automation.

In our discussions, we focused on
1. aspects relevant for applying state-of-the-art

BDD in practice, with argument for and against
BDD,

2. completeness of these aspects, covering all as-
pects listed in [9] and [5],

3. a classi�cation of these aspects, leading towards
a taxonomy of BDD.

In the following, we summarize the results.

3 Sixteen Aspects of BDD

In our discussions, we came across many situations,
aspects and arguments for and against BDD. From
these discussions, we isolated 4 x 4 aspects that we
grouped into 4 categories: speci�cation, process, tech-
nical application and return on investment (ROI). For
each aspect, we collected arguments for and against

1. Formality and Fluency
2. Structure
3. Nesting
4. Expressiveness

 Specification
 Technical
 Application
1. Versioning
2. Traceability
3. Test Coverage
4. Tooling

1. Workflow
2. Test Levels
3. Acceptance Criteria
4. Process Requirements

Process
ROI

1. Understandability
2. Maintenance
3. Scalability
4. Implementation Effort

Figure 1: Relevant aspects of applying BDD

BDD. Hence this paper focuses on establishing the
aspects in the table on the right as a basis for future
discussions and investigations about BDD � for estab-
lishing a taxonomy of BDD.

3.1 Speci�cation

3.1.1 S1 Formality and Fluency

In BDD, requirements are captured using a scenario
speci�cation language like the popular Gherkin. Such
languages are based on natural language but de�ne a
few special keywords like �Given�, �When� and �Then�.

Gherkin statements can be written in such a way
that they are like natural language, even when using
parameters. The range can vary from non-reusable
statements copied without any change from an already
existing speci�cation up to parameterized statements,
explicitly designed for reusability, but still conforming
to the grammar of the underlying natural language.

BDD scenarios innately focus on domain level not
on implementation level. This has the advantage that
test cases are instantly readable and understandable
by subject matter experts. However, developers and
test automation engineers need getting used to an
example-oriented style of speci�cation where state-
ments are not primarily designed for reuse.

3.1.2 S2 Structure

A common question in software projects is how to
structure test automation. For instance, the popular
JUnit does not come with out-of-the-box structuring
guidelines. Gherkin/Cucumber �lls a gap by forcing
the user to de�ne a set of reusable steps on business
level, which is usually is not explicitly addressed when
implementing classical unit-based tests.

But it remains open how to organize the underly-
ing automation layer. Some approaches suggest using
three layers of abstraction: the business rules, the sys-
tem work�ow, and the speci�c user activities.

Providing an additional business layer is a clear ad-
vantage of the BDD methodology but can be challeng-
ing for developers to transform a set of self-contained
scenarios that follow the Speci�cation by Example
paradigm [1] into a �exible structure of underlying
parametrized and re-usable implementation functions.

3.1.3 S3 Nesting

Di�erent to other speci�cation techniques, BDD only
supports a small set of expressions. The strict form
of BDD statements (given, when, then) increases the
readability and comprehensibility of the speci�cation
but reduces the expressiveness (see S4).

BDD is missing case distinction and repeated state-
ments as well as the possibility to modularize the
scenarios using sub-scenarios. Thus, each scenario is
self-contained but hides the potentially existing com-
plexity on the implementation level. Consider e.g.

the login process which may be de�ned as a simple
BDD statement (�given a logged-in user�) but is im-
plemented in the speci�ed system as a complex work-
�ow and also the BDD automation consists of a series
of steps to validate the logged-in user.

Due to the lack of modularization techniques and
control-�ow instructions (see S1 and S2), the right
level of abstraction for scenarios and comprised steps
must be chosen to avoid unnecessary complexity by
keeping scenarios small and concise without listing
any irrelevant details. This is one of the challenges
when applying BDD.

3.1.4 S4 Expressiveness

The previous aspects result in lower expressiveness of
BDD compared to code-based or model-based tests,
which means you need to write more tests or more
complex tests, or you will �nd fewer bugs. So lower
expressiveness of the speci�cation language directly
leads to a test suite that has a lower fault-�nding e�ec-
tiveness. However, since BDD's intention is to focus
on and specify only certain examples, its lower expres-
siveness is suitable if you keep the lower fault-�nding
e�ectiveness in mind.

Since BDD is a form of speci�cation-by-example,
all pros and cons of this approach also apply to it. For
example, the primary focus on signi�cant cases is one
of the major advantages of speci�cation-by-example
and therefore BDD, but may lead to incompleteness
of the speci�cation, be it caused by missing scenarios
for relevant cases or caused by a wrong interpolation
from speci�ed to similar cases. A guidance to avoid
typical faults in example-based speci�cations like the
lack of completeness can be found in [1].

3.2 Process

3.2.1 P1 Work�ow

The most prominent BDD work�ow comprises a lan-
guage (Gherkin), a tool (Cucumber) and a process
(see P4 and [9]). The process relies on the outside-in-
development work�ow. Cucumber natively supports
this work�ow on the testing side: First business an-
alysts write scenarios in Gherkin. The quality of the
scenarios strongly in�uences how e�cient and e�ec-
tive the remaining work�ow is, for instance scenarios
should be on the right level of abstraction (see S3),
prioritized, and estimable. These properties increase
agility and negotiability (see P4 and [8]). After spec-
ifying the scenarios, Cucumber generates a code stub
plus a corresponding matching clause for each missing
step implementation. Without any change, generated
code fragments can serve to set up frames for missing
step implementations rapidly. Thereafter, the pattern
matcher will no longer fail, but will point to remain-
ing implementation tasks by throwing �missing step
implementation exceptions�.

On the development side, the work�ow is not as
de�ned as on the testing side. In principle BDD
allows to realize Acceptance Test Driven Develop-
ment (ATDD). ATDD aims to shift TDD's unit-test-
level-centric Red-Green-Refactor-Cycle to a higher-
level Specify-Develop-Deliver-Cycle. In practice, es-
pecially in large-scale projects, it is very challenging
to implement such an approach. The result is that
BDD is often used for testing purposes only, resulting
in BDT.

3.2.2 P2 Test Levels

BDD as a speci�cation language de�nes scenarios on
a user-centered view. Thus, naturally these scenarios
are situated on acceptance test level when using the
de�ned scenarios as input for tests (see P3). Of course,
BDD and especially Gherkin as language are not lim-
ited to acceptance tests (see also [9]): Tests on other
levels may also be described using BDD techniques,
including unit, integration, system tests and system
integration test. For instance, Cucumber's ability to
specify data-driven tests can be used to realize unit
tests on a very detailed level.

On the one side establishing BDD techniques across
di�erent test levels is a great step towards methodi-
cal and technological convergence. On the other side
in our opinion BDD is not the perfect choice for all
required testing activities. Classical examples for test
levels that require approaches beyond Speci�cation by
Example (SbE) [1] are performance and stress tests.

Another aspect when applying BDD across di�er-
ent test levels is the achieved test coverage (see T3).

3.2.3 P3 Acceptance Criteria

One of the main strengths of BDD is its focus on
acceptance criteria. This is no surprise since BDD
emerged from ATDD by o�ering domain speci�c and
ubiquitous speci�cations (see S1), enabling domain
experts and developers to collaboratively derive ac-
ceptance criteria formulated in the domain language
(see also [9]). Furthermore, these story-based speci�-
cations should be derived outside-in, i.e. with business
value in mind, yielding value-based acceptance crite-
ria. Finally, these speci�cations are executable as test
cases, avoiding any gap between the speci�cation and
the implementation and providing continuous valida-
tion to guarantee that a test will fail the moment the
implementation no longer conforms to the acceptance
criteria. For these reasons, BDD has evolved into a
popular practice from agile requirements engineering
and design down to software development and testing.

However, some of BDD's de�cits require the use
of other methods for specifying and testing in cer-
tain situations, e.g. when: semi-formalness (see S1)
and low expressiveness (see S4) cause the need for
stronger functional speci�cations, e.g. speci�cation-

based BDD, a form of property-based testing; the
outside-in approach might tempt you to focus only
on the happy paths, so you can easily miss special
cases, e.g. exceptional situations; non-functional re-
quirements must be tested automatically; for instance,
robustness and security tests are often covered bet-
ter by fuzzing or MBT; high test coverage must be
guaranteed (see T3 below), where methods like MBT
shine certi�cations and standards are relevant, e.g.
ISO 26262 requiring more formal and rigorous RE and
quality assurance methods.

Having multiple speci�cations or testing methods
causes the usual disadvantages from redundancies, es-
pecially double work, risk of inconsistencies and the
need for traceability between them (see T2).

3.2.4 P4 Process Requirements

In each project that is going to apply BDD, some
typical questions need to be addressed: Who writes
and modi�es the feature �les? Who programs the
step implementations? Do we need di�erent libraries
for module tests, integration tests and product tests?
How and by whom will di�erent contributions be inte-
grated into a �common library�? Are there any �own-
ers� of common libraries? How are shared steps iden-
ti�ed? Are there guidelines for writing scenarios and
steps? How does the project deal with changes? An-
swering these questions might point out that existing
roles, work�ows and procedures require changes. Be-
fore introducing BDD, each project should determine
if it can handle all required changes.

3.3 Technical Application

3.3.1 T1 Versioning

As BDD is text-based, it is easy to archive scenarios
using a version control system and to compare current
and older versions of a BDD scenario. Comparisons
are much easier for text-based artefacts than for mod-
els, even if the models have a textual representation
� a text-based comparison for models is less helpful.
Note that the comparison mechanism only works on
�les that preserve (beyond others) the scenario order.

Additionally, the code base for the BDD project
can be archived like any other code.

3.3.2 T2 Traceability

Traceability is the ability to link requirements to other
artifacts like code, test cases, or bugs. In software
testing, traceability allows to trace back to the corre-
sponding requirements, for instance if a test fails, or if
you want to compute the requirements coverage (see
T3) of a test suite.

Using BDD's executable speci�cations, de�ned sce-
narios can be run as acceptance tests without any
change. BDD scenarios serve simultaneously as ac-
ceptance criteria and tests (see P3). Consequently,

BDD simpli�es traceability between user stories, re-
lated scenarios and test runs, i.e. executed scenarios.
BDD's speci�cations do not directly enable traceabil-
ity to code, but by applying the ATDD work�ow (see
P1) scenario-related code changes can be traced.

3.3.3 T3 Test Coverage

A common misunderstanding is that BDD's main pur-
pose is test automation. This also leads to the at-
tempt to achieve high test coverage by using BDD.
The term BDT is often used by those having this mis-
understanding, as well as those trying to clarify this
misunderstanding.

Looking at the other aspects reveals that BDD's
purpose is not test automation, but application on the
requirements and process level. That is why [1] dis-
courages doing combinatorial testing using BDD and
advises to pick examples to improve understanding:
�There isn't much point in going through examples
that illustrate existing cases; that doesn't improve un-
derstanding. When illustrating using examples, look
for examples that move the discussion forward and
improve understanding.� In short: BDD tests �aren't
replacements for combinatorial regression testing.� In-
stead, BDD tests should focus on the functionality
leading the business to success: �Decide what to cover
and what not to cover depending on the conditions of
success for the story.� [1]

Thus, other methods are more suitable to achieve
high test coverage, e.g. MBT and fuzzing (see P3 and
R4). To purely measure test coverage, however, BDD
is su�cient, even for requirements coverage (see T2).

3.3.4 T4 Tooling

BDD is not usable without a good tool support be-
cause speci�cations should be made executable. BDD
tools o�er an easy way to bind a scenario speci�ca-
tion and the corresponding test implementation and
to detect a missing step implementation.

Many tools are available: from BDD support
for numerous programming languages (e.g. Cucum-
ber, JBehave, SpecFlow, Jasmine), execution environ-
ments, to integrations in IDEs (e.g. Eclipse, Visual
Studio) and even sole test tools (e.g. TestLeft).

As scenarios may grow and become complex and
have semantic similarities (e.g. di�erent ways to de-
scribe a logged-in user), support for refactoring of sce-
narios is needed but only partly provided by tools, e.g.
the tool Hiptest supports renaming and the replace-
ment of some steps by an action and vice versa, but
more complex refactoring operations are not provided.
Practically each project needs to verify that there is
a working combination of existing testing code, de-
ployed IDEs and compatible plugins providing sup-
port for the speci�c version of the desired BDD lan-
guage.

3.4 ROI

3.4.1 R1 Understandability

To productively apply BDD, many parts need to be
understood: the concept, the work�ow, the tool and
speci�cation language being applied, and �nally the
concrete tests being speci�ed.

As described in the introduction, the core concept
is easy to grasp, as is the work�ow (see P1). This
is even more so if you are familiar with TDD � after
all, the original and technical goal of BDD was �TDD
done right� (see [4]).

Aspect T4 explained that many tools are open
source and have a big community. Thus, there is a
lot of online information, but the availability of thor-
ough manuals is limited. In summary, the aid in get-
ting started with a speci�c BDD tool is usually much
higher than in diving deeper into the subject, to apply
BDD in the right way for a large project, to cope with
maintenance and scalability issues (see R2, R3).

Due to the semi-formality (see S1), the simple
structure (see S2), the avoidance of nesting (see S3),
the Gherkin language is very simple, making it easy
to understand. But the low expressiveness spawned
alternative speci�cation languages (see S4) that are
more di�cult, as is the decision which speci�cation
language to pick when. Having many test cases,
textual languages are usually simpler to understand
than graphical speci�cations and more suitable for
test cases that are non-nested, �at, singular examples.
Textual searching, di�ng and versioning also helps in
understanding and researching within the tests. How-
ever, occasionally graphical test speci�cations (e.g. in
BPMN) can be preferable even within BDD [7].

Gherkin leads to very understandable (story-based)
tests, for developers as well as managers and domain
experts. This ubiquitous speci�cation language is one
of the key selling points of BDD.

3.4.2 R2 Maintenance

The lack of expressiveness of the Gherkin languages
leads to scenarios that are di�cult to maintain - the
longer a scenario is, the more complex is the content
of each of the Gherkin sections (given, when, then).
There are two way to deal with complexity. The �rst
is to abstract from the concrete steps, e.g. if a com-
plex login scenario is reduced to a short precondition
(�given the user is logged in�) � the complexity will
then be implemented on the code's side. The second
way is to describe the complete scenario in Gherkin,
having more mapping in code but a lot of statements
in the speci�cation. Both ways may be mixed.

Both ways are di�cult to maintain. Assume a
change in the login process. In the �rst case, the im-
plementation has to be changed which may have an
impact on other scenarios which can be linked to the
same code. In the second case, all a�ected scenarios

have to be changed. Mixing both ways, that is to
build logical units for parts of a scenario which are
implemented as functions in code, may increase the
maintainability of BDD scenarios.

Maintenance for BDD can explode when you have
thousands of BDD scenarios, traceability to user sto-
ries, test automation, and impact analyses. Reusabil-
ity is often very di�cult in BDD as it does not enforce
modularization (see S2, S3, S4).

3.4.3 R3 Scalability

Does BDD scale well, meaning that it can be applied
e�ectively even if the size of the team, source code,
set of acceptance criteria and complexity of the appli-
cation as well as domain rises? The expressiveness of
the speci�cation (see S4), weak test coverage (see T3)
and maintenance (see R2) can break BDD's feasibility
and e�ectiveness if it is not applied masterfully.

The SbE book [1] lists some example large scale
projects that have successfully applied BDD. These
project reports point out that most successful teams
were very competent and/or had help from very strong
testing and BDD consultants, ensuring that BDD was
applied masterfully.

3.4.4 R4 Implementation E�ort

The e�orts for introducing and implementing BDD in
a team can be partitioned into the initial costs un-
til you get BDD running, and thereafter the running
costs. The previous aspects have shown that BDD's
initial costs are relatively low compared to other meth-
ods (such as model-based or keyword-driven testing,
see [2]), mainly because understanding the concept,
the work�ow, the tool and speci�cation language is
relatively easy. However, the running costs can be-
come huge, mainly due to maintenance and scalability
issues (see aspect R2).

4 Summary

We have listed and categorized all aspects we �nd rel-
evant for applying BDD in practice. They serve as a
basis for future discussions and investigations about
BDD and are thus a step towards a taxonomy.

In our own discussions, these aspects and their cat-
egorization have shown to be particularly useful to
assess the potential application of BDD in speci�c
projects and compare its bene�ts to alternative meth-
ods - or investigate combinations of methods.

For instance, our section about implementation ef-
fort (see R4) comprises the e�orts investigated in all
other aspects and shows that BDD has very low ini-
tial and very high running costs � reciprocal to, for
instance, MBT. This might be a reason why BDD
is a hype but not often found in large projects, as
our discussions have shown. In contrast, it has been
shown that MBT can be applied very successfully in
large projects (see e.g. [6]), but gets adopted rarely.

This �nding is also substantiated by the success
projects reported in [1]: Almost all larger projects
that do apply BDD had consulting from BDD experts
about its e�ective application. Furthermore, one of
the projects showed that it can take twice as long to
go from solid TDD to solid, bene�cial BDD than it
took to go from weak engineering to solid TDD.

We plan to continue our discussions and believe
these 4 x 4 aspects are a solid foundation that can help
many to evaluate BDD in their context and is thus
a step towards deriving an established taxonomy for
applying BDD � similar to [10] for MBT approaches.

5 Acknowledgments

We thank Karsten Dörges, Benedikt Eberhardinger,
Dierk Ehmke, Matthias Hamburg, Jan Giesen, Karoly
Kiss, Andrej Pietschker, and Andreas Spillner for the
productive discussions during the last group meetings
of our AK TOOP in Munich and Bremerhaven. This
article is based on the results of these meetings.

References

[1] G. Adzic. Speci�cation by Example: How Successful
Teams Deliver the Right Software (1st ed.). Manning
Publications Co., 2011.

[2] C. Brandes, B. Eberhardinger, D. Faragó, M. Friske,
B. Güldali, A. Pietschker. Drei Methoden, ein Ziel:
Testautomatisierung mit BDD, MBT und KDT im
Vergleich. STT 35, Heft 3, 2015.

[3] B. Eberhardinger, D. Faragó, M. Friske, D. Soke-
nou. Aktuelle Fragestellungen zum Zusammenspiel
von BDD, MBT und KDT. STT 36, Heft 3, 2016.

[4] A. Egbreghts. A Literature Review of Behavior
Driven Development using Grounded Theory. 27th
Twente Student Conference on IT, 2017.

[5] B. Holz. Increase Collaboration and Drive Agility
With Behavior-Driven Development. Gartner, 2015.

[6] W. Grieskamp, N. Kicillof, K. Stobie, V. Braberman.
Model-based Quality Assurance of Protocol Documen-
tation: Tools and Methodology. STVR 21.1, 2011.

[7] D. Lübke, T. van Lessen. Modeling Test Cases
in BPMN for Behavior-Driven Development. IEEE
Software. 33 (5): 15�21, 2016.

[8] G. Oliveira, S. Marczak. On the Empirical Evalua-
tion of BDD Scenarios Quality: Preliminary Find-
ings of an Empirical Study. IEEE 25th International
RE Conference Workshops, 2017.

[9] C. Solís, X. Wang. A Study of the Characteristics of
Behaviour Driven Development. 37th EUROMICRO
Conference on SE and Advanced Applications. 2011.

[10] M. Utting, B. Legeard. Practical Model-Based Test-
ing: A Tools Approach. Morgan Kaufmann 2007.

	What is BDD today
	Discussions on BDD within our AK
	Sixteen Aspects of BDD
	Specification
	S1 Formality and Fluency
	S2 Structure
	S3 Nesting
	S4 Expressiveness

	Process
	P1 Workflow
	P2 Test Levels
	P3 Acceptance Criteria
	P4 Process Requirements

	Technical Application
	T1 Versioning
	T2 Traceability
	T3 Test Coverage
	T4 Tooling

	ROI
	R1 Understandability
	R2 Maintenance
	R3 Scalability
	R4 Implementation Effort

	Summary
	Acknowledgments

