
Building Transformation Networks for Consistent Evolution of
Interrelated Models

Heiko Klare

Context When developing a software system, de-
velopers and further stakeholders employ multiple lan-
guages or, in general, tools to describe different con-
cerns. Code is often the central artifact, which is, how-
ever, implicitly or explicitly complemented by specifi-
cations of the architecture, deployment, requirements
and others. In addition to a programming language,
further languages are used to specify these artifacts,
such as the UML for object-oriented design or archi-
tecture models, the OpenAPI standard for interface
definitions, or Docker for deployment specifications.
To achieve a functional software system, these arti-
facts must depict a non-contradicting specification of
the system. For example, service interfaces must be
represented in all these artifacts uniformly. We say
that the artifacts have to be consistent.

Problem In model-driven development, such ar-
tifacts are denoted as models and constitute central
units of the development process, from which also
parts of the program code can be derived. This is, for
example, already applied in automotive software de-
velopment [5], but also applies to general software de-
velopment even if artifacts are not explicitly denoted
as models. A common means to preserve consistency
between models are transformations [2], which adapt
the other models after one of them was changed [1].
Existing research is restricted to bidirectional trans-
formations that preserve consistency between pairs
of models [10] or to project-specific combinations of
transformations to preserve consistency of multiple
models [4], as also pointed out in a recent Dagstuhl
seminar [6]. Actual software systems are, however,
usually described with more than two models, and the
languages used to specify them vary between projects.
From a software engineer’s perspective, reusability of
solutions for recurring problems is crucial. This also
applies to transformations [8], which, once developed
for two specific languages such as UML class diagrams
and Java code, may be reused across all projects using
the same languages. Even without targeting reuse,
supporting independent development of transforma-
tions is beneficial to separate concerns, because each
domain expert who specifies a transformation may
only know about consistency between some of the lan-
guages but not between all of them [7]. A systematic
engineering process that enables the independent de-
velopment of transformations and their modular reuse
in different contexts is, however, not yet supported.

Gap In this thesis, we research how developers can
combine multiple transformations to a network that is
able to execute these transformations in an order such
that all resulting models are consistent. Existing work
puts a rather mathematical view on the problem, i.e.,
it considers mathematical requirements for the decom-
position of consistency between multiple models to a
pairwise notion [10] and assumes that transformations
can be aligned with each other to interoperate prop-
erly [9]. We, in contrast, consider the problem from
a software engineer’s perspective and make the cen-
tral assumption that each transformation between two
languages is developed independently and that the
transformations are not and cannot be aligned with
each other, in order to support independent develop-
ment and reuse. We base mathematically founded as
well as empirical considerations from case studies on
these assumptions. Our contributions are separated
into those concerning the correctness and those con-
cerning the optimization of quality properties of such
a combination of transformations to a network.

Contributions We first derive and precisely de-
fine an appropriate notion of correctness for trans-
formation networks. It induces three specific require-
ments, which are a synchronization property of the
single transformations, a compatibility property of a
network of transformations, and finding an appropri-
ate orchestration, i.e., an execution order of the trans-
formations. We propose a construction approach for
transformations to fulfill the synchronization property
with existing transformation specification languages
on a formally proven property. This allows developers
to specify transformations that properly interoperate
with others without knowing these other transforma-
tions beforehand, thus supporting independent devel-
opment and reuse. For this approach, we show com-
pleteness and appropriateness with a case-study-based
empirical evaluation in the domain of component-
based software engineering. We formally define com-
patibility of transformations, for which we propose a
formal analysis, which is proven correct, and derive
a practical analysis, whose applicability we demon-
strate with case studies. This supports developers
in detecting contradiction between transformations,
which can, for example, occur when different develop-
ers have conflicting notions of consistency such that
the developed transformations cannot preserve them
at the same time. Finally, we define the orchestra-



tion problem of finding an execution order that deliv-
ers consistent models whenever such an orchestration
exists. We prove undecidability of that problem and
discuss that restrictions to achieve its decidability will
likely limit practical applicability. For that reason, we
propose an algorithm that conservatively approaches
the problem. It guarantees to deliver an orchestration
under specific, well-defined conditions and otherwise
indicates an error. We prove correctness of the algo-
rithm and a property that supports finding the cause
whenever the algorithm fails. This raises awareness
of developers about the inability of any orchestration
algorithm to always succeed and also gives them an al-
gorithm at hand that systematically supports them in
dealing with failures. Additionally, we categorize er-
rors that can occur if a transformation network does
not fulfill the defined correctness notion, from which
we derive by means of the mentioned case studies that
most potential errors when executing transformation
networks can be avoided already by construction with
the approaches that we propose in this thesis.

Our investigation of quality of transformation net-
works is based on a classification of relevant proper-
ties, such as maintainability and reusability, and of
the effects of different network topologies on them. It
reveals that especially correctness and reusability are
contradicting properties, thus the selection of a net-
work topology induces a trade-off between these prop-
erties. We derive a construction approach for transfor-
mation networks that mitigates the necessary trade-
off decision and, under specific assumptions, guaran-
tees correctness by construction. We support the de-
velopment process for this approach with a specifica-
tion language. While trade-off mitigation is given by
construction of the approach, we show achievability of
the assumptions and benefits of the proposed language
in an empirical evaluation using the case study from
component-based software engineering. This makes
developers aware of necessary trade-offs between qual-
ity properties but also provides them a constructive
approach to mitigate them.

Benefits These contributions support researchers
as well as transformation developers and users in ana-
lyzing and constructing networks of transformations.
They depict systematic knowledge about correctness
and further quality properties of transformation net-
works for researchers and transformation developers.
In particular, they show precisely which parts of these
properties can be achieved by construction, which can
be validated by analysis, and which errors must in-
evitably be expected during execution. Along with
these insights, we provide practically applicable ap-
proaches for the construction, analysis and execution
of correct and modularly reusable transformation net-
works, from which developers and users both benefit.

Limitations and Future Work While the con-
tributions systematically support the specification of
transformation networks to keep multiple artifacts of a

software development process consistent, its assump-
tions raise potential limitations to be investigated in
future work. First, the contributions assume models
conforming to an object-oriented description accord-
ing to the Meta-Object Facility [3]. While this is sen-
sible for software design, it is unclear whether this is
also appropriate for other types of models, e.g., de-
scribing describing behavior. In addition, we assume
transformations to be a suitable means to preserve
consistency between software engineering artifacts.
They have not yet been applied to general software
engineering in a large scale but in specific domains
such as automotive software engineering. In partic-
ular, the benefit of reduced development effort and
errors through preserving consistency has to amortize
the effort for specifying the transformations, which is
currently only a sensible expectation but has to be
validated empirically in general software engineering.

Outlook Although the specific algorithms and
construction approaches we researched may become
obsolete or revised at some point in time, the founda-
tional insights regarding decidability of the orchestra-
tion problem, regarding the necessity for synchroniza-
tion and the required properties of transformations to
achieve it, as well as regarding the inevitable trade-offs
between quality properties are inherent to the problem
and will thus remain relevant if discussing solutions to
the problem under the same assumptions.

References
[1] P. Stevens. “Bidirectional model transformations in

QVT: semantic issues and open questions”. In: Softw
Syst Model 9.1 (2010), pp. 7–20.

[2] A. Kusel et al. “A Survey on Incremental Model Trans-
formation Approaches”. In: Workshop on Models and
Evolution. CEUR-WS, 2013, pp. 4–13.

[3] Object Management Group (OMG). Meta Object Facil-
ity (MOF) Core Specification. 2016.

[4] Z. Diskin, H. König, and M. Lawford. “Multiple Model
Synchronization with Multiary Delta Lenses”. In: 21st
International Conference on Fundamental Approaches
to Software Engineering. Springer, 2018, pp. 21–37.

[5] H. Guissouma et al. “An Empirical Study on the Cur-
rent and Future Challenges of Automotive Software Re-
lease and Configuration Management”. In: 44th Euromi-
cro Conference on Software Engineering and Advanced
Applications. IEEE, 2018, pp. 298–305.

[6] A. Cleve et al. “Multidirectional Transformations
and Synchronisations (Dagstuhl Seminar 18491)”. In:
Dagstuhl Reports 8.12 (2019), pp. 1–48.

[7] H. Klare et al. “A Categorization of Interoperability Is-
sues in Networks of Transformations”. In: Journal of Ob-
ject Technology 18.3 (2019), 4:1–20.

[8] J.-M. Bruel et al. “Comparing and classifying model
transformation reuse approaches across metamodels”. In:
Softw Syst Model 19.2 (2020), pp. 441–465.

[9] P. Stevens. “Connecting software build with maintain-
ing consistency between models: towards sound, optimal,
and flexible building from megamodels”. In: Softw Syst
Model 19.4 (2020), pp. 935–958.

[10] P. Stevens. “Maintaining consistency in networks of
models: bidirectional transformations in the large”. In:
Softw Syst Model 19.1 (2020), pp. 39–65.

2

http://dx.doi.org/10.1007/s10270-008-0109-9
http://dx.doi.org/10.1007/s10270-008-0109-9
http://ceur-ws.org/Vol-1090/1.pdf
http://ceur-ws.org/Vol-1090/1.pdf
http://www.omg.org/spec/MOF/2.5.1/
http://www.omg.org/spec/MOF/2.5.1/
http://dx.doi.org/10.1007/978-3-319-89363-1_2
http://dx.doi.org/10.1007/978-3-319-89363-1_2
http://dx.doi.org/10.1109/SEAA.2018.00056
http://dx.doi.org/10.1109/SEAA.2018.00056
http://dx.doi.org/10.1109/SEAA.2018.00056
http://dx.doi.org/10.4230/DagRep.8.12.1
http://dx.doi.org/10.4230/DagRep.8.12.1
http://dx.doi.org/10.5381/jot.2019.18.3.a4
http://dx.doi.org/10.5381/jot.2019.18.3.a4
http://dx.doi.org/10.1007/s10270-019-00762-9
http://dx.doi.org/10.1007/s10270-019-00762-9
http://dx.doi.org/10.1007/s10270-020-00788-4
http://dx.doi.org/10.1007/s10270-020-00788-4
http://dx.doi.org/10.1007/s10270-020-00788-4
http://dx.doi.org/10.1007/s10270-019-00736-x
http://dx.doi.org/10.1007/s10270-019-00736-x

