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Introduction Bugs in software are expensive, un-
avoidable, and present a key challenge in software de-
velopment. To ensure the reliability of their products,
businesses such as Google, Facebook spend millions of
dollars in bug uncovering programs, i.e., bug bounty.
Apart from the business perspective, bugs in software
can be harmful, demonstrated by incidents such as ra-
diation treatment overdose, or patriot missile defense
system failure that have cost human lives [7].

Program analysis is a widely used approach to find
bugs in software that either check for commonly made
mistakes based on pre-defined rules or perform so-
phisticated analyses of programs. These approaches
can be broadly classified into two groups. 1) Static
analysis-based approaches that reason about programs
without actually executing them. 2) Dynamic analysis-
based approaches that analyze programs during exe-
cution and reason about program behavior based on
runtime values.

The goal of the dissertation summarized here is to
use program analysis and novel learning-based tech-
niques to alleviate some of the challenges faced by
developers while ensuring the correctness and relia-
bility of programs. We focus on dynamically typed
languages such as JavaScript and Python for their
popularity and present six approaches that leverages
analysis of code corpora in aiding to solve software en-
gineering problems. This article is divided into three
parts. In the first two parts, we present software de-
fect detection involving static and dynamic analyses
respectively over code corpora. In the third part, we
present a technique of input reduction leveraging large
code corpora. Figure 1 provides an outline of this ar-
ticle.

1 Software Defect Detection Using
Static Analysis

Statically analyzing source code can uncover many
interesting features about programs such as frequent
code idioms, function signatures. We use static anal-
ysis to generate new programs, to seed bugs in pro-
grams, and to obtain data for training neural models.

a. Inferring Type Annotations Using Natural
Language Information. Dynamically typed lan-
guages such as Python and JavaScript allow for fast
prototyping. Unfortunately, this comes at a cost of
many type-related issues at runtime. To mitigate some
of these problems during development, we have trained
neural models that aid developers by suggesting types
in not-yet annotated JavaScript code and also by iden-
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Figure 1: Overview of the contributions and the con-
nections between them. Labels a.,b.,c. correspond to
the static analysis approaches whereas d. and e. cor-
respond to the dynamic analysis approaches presented
in this article.

tifying inconsistencies in existing type annotations.
We obtain the training data for the models by stati-
cally analyzing a corpus of JavaScript programs, and
by extracting information such as comments, function
names and parameter names.

b. Improving Bug Detectors by Semantic Bug
Seeding. Machine learning on source code has myr-
iad applications ranging from code completion [4], de-
fect detection [5], [2], [3], to program synthesis [6]. To
be effective, many such approaches need large train-
ing datasets that contain pairs of correct and buggy
code. In our work, we generate a large dataset of
buggy code by imitating accidental mistakes made by
developers. Such mistakes are found by statically an-
alyzing publicly accessible repositories and are used
to create buggy code examples by mutating existing
code. As a concrete application, we find the generated
bug dataset to improve the effectiveness of an existing
learning based bug detector called DeepBugs [5].



c. Fuzz Testing JavaScript Engines. In our
recent survey [1], we find that like any other soft-
ware, compilers are also not immune to bugs and sig-
nificant research efforts have been devoted towards
finding compiler bugs. JavaScript being one of the
most popular languages, bugs in engines that process
JavaScript programs can be disastrous. In our work,
we statically analyze a large corpus of example pro-
grams to learn probabilistic, generative models that
can generate new programs having properties similar
to the corpus. Among others, we apply our approach
to a corpus of JavaScript programs and generate large
number of new programs that are further used to test
JavaScript engines. During our testing, we find many
inconsistencies among browsers, unimplemented lan-
guage features and bugs in the JavaScript engines of
Chrome1 and Firefox2.

2 Software Defect Detection Using
Dynamic Analysis

Static analysis can only make approximations about a
program. Dynamic analysis on the other hand keeps
track of the runtime behavior of programs and can
provide more precise information. The following sum-
marizes our work that involve dynamic analysis to find
defects in software.

d. Finding Inconsistencies Among JavaScript
Libraries. Due to the lack of namespaces, when
multiple JavaScript libraries are included together,
they all share the same global namespace. This can
cause libraries to modify and even delete each oth-
ers APIs causing conflicts. In our work, we dynami-
cally analyze a corpus of JavaScript libraries and find
that even popular libraries when included together in
a webpage can result in conflicts. Our work is use-
ful for developers and users of JavaScript libraries by
providing information about possible conflicting sce-
narios with other libraries.

e. Detecting Name-Value Inconsistencies. Iden-
tifiers play a crucial role in code understandably and
maintainability. Developers strive to choose meaning-
ful names that express the value and behavior a name
is bound to. In our work, we dynamically analyze a
corpus of Python programs to track assignment values
to names and use them to train a neural model that
predicts if a name and value fit together. The trained
model is useful in finding name-value inconsistencies
and bugs in real world code. Additionally, we are the
first to use runtime values to train machine learning
models that can find bugs in code.

1https://bugs.chromium.org/p/v8/issues/detail?id=

4669
2https://bugzilla.mozilla.org/show_bug.cgi?id=

1231139

3 Corpus-based Input Reduction

In addition to finding bugs, large corpora of code may
be leveraged for other tasks such as reducing test in-
puts. We present an effective technique called Gen-
eralized Tree Reduction algorithm (GTR), to reduce
arbitrary test inputs that can be represented as a tree,
such as program code, PDF files, and XML docu-
ments. The efficiency of input reduction is increased
by learning transformations from a corpus of example
data.
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