
Model-Driven Development Methodology and Domain-Specific Languages for
the Design of Artificial Intelligence in Cyber-Physical Systems

Evgeny Kusmenko
Department of Software Engineering

RWTH Aachen University

Abstract. The development of intelligent and in-
terconnected cyber-physical systems is an interdisci-
plinary challenge requiring appropriate processes, lan-
guages, and tools supporting the engineering team. In
this dissertation a model-driven architecture-centric
approach for intelligent CPS design is presented. The
foundation of this methodology is given by the ar-
chitecture description language EmbeddedMontiArc.
It enables a structural decomposition of the softwa-
re system under development into hierarchically or-
ganized components. Based on the component-and-
connector paradigm, the components of the system are
side-effect free units with clear interfaces manifested
as typed ports. Components communicate exclusively
over explicit connectors between their ports. Implicit
communication over shared memory and side-effects
are forbidden in order to ensure maintainability, te-
stability, and reusability.

EmbeddedMontiArc is equipped with an abstract
type system designed for the engineering domain. Its
primitive types represent mathematical sets such as
integer, rational, and complex numbers. The techni-
cal details and the decision how a given mathematical
type will be implemented on the target platform are
delegated to the code generator or the compiler. To ac-
count for finite operational ranges of physical systems,
a primitive type can be constrained by lower and up-
per bounds and a resolution. Furthermore, a primitive
type can be enriched by a physical unit it represents.
This enables the compiler to check the physical com-
patibility of connected ports and to perform automa-
ted type conversion of compatible units, hence elimi-
nating a common source of errors in physical systems
design and implementation. Primitive types can be
composed into matrix types and structures to account
for complex data flows in cyber-physical systems.

Intelligent cyber-physical systems need to adapt to
new situations at runtime steadily. Cooperation with
other similar systems encountered at runtime but not
known at design time might be necessary in order to
improve the overall system performance and to en-
sure the achievement of goals in the best possible
way. For this reason, runtime reconfigurations of a
cyber-physical system’s interfaces as well as its inter-
nal structure must be possible by design. Embedded-
MontiArc offers a modeling framework for the dyna-
mic parts of the system enabling the designer to mo-
del runtime instantiation and rewiring of components
and their interfaces. These reconfigurations can be ac-
tivated at runtime by triggers. Triggers are defined

in the models as Boolean expressions on port values,
i.e. a runtime reconfiguration can become active when
a port reads a specific value, e.g. when the velocity
of the cyber-physical system surpasses a predefined
threshold. Furthermore, triggers can be based on other
preceding reconfigurations. This enables the definition
of reconfiguration chains as sequences of atomic archi-
tectural modifications. For instance, the perception of
another cyber-physical system might lead to the in-
stantiation of a dedicated communication interface.
The creation of the interface leads to the instantiati-
on of further components, e.g. for messaging, collision
checking, cooperative planning, etc.

While the behavior of the designed system can
be assembled from basic blocks similar to Simulink,
a possibility to implement component behavior by
means of other languages and paradigms is desirable.
For this purpose, the presented methodology intro-
duces two domain-specific languages. Component be-
havior code written in one of these two languages is
embedded into the implementation block of the com-
ponent and uses component ports to interact with the
outer world. The first language, MontiMath, is inspi-
red by MATLAB and enables the developer to des-
cribe mathematical algorithms in a procedural way.
This language adopts the type system discussed abo-
ve, thereby rendering modeling of physical processes
less prone to unit-related errors.

Since artificial intelligence (AI) and deep learning
have been gaining more and more interest and have
been applied successfully in a variety of domains in the
last years, the proposed methodology introduces Mon-
tiAnna, a second domain-specific language enabling
the developer to implement the behavior of a compo-
nent as a deep neural network. Providing a dedicated
language instead of neural network libraries for Mon-
tiMath has two main reason: first, neural networks
require a different thinking and hence, can be gras-
ped better using an appropriate language. Second, a
clear encapsulation of neural networks as components
and their separation from general purpose code is the
basis for the automation of the machine learning de-
velopment cycle.

Targeting industrial applicability and easy usage
by engineers and developers who are no AI experts,
MontiAnna employs a high level modeling approach
regarding neural networks as directed acyclic graphs
(DAGs) of neuron layers which is in line with popu-
lar frameworks such as Keras or PyTorch. MontiAnna
provides a library of different layer types, which can



be used by the developer to instantiate neuron layers
in a neural network model. The library was designed
based on a thorough analysis of state-of-the-art deep
learning architectures and includes layer types cover-
ing fully connected or dense neuron layers, convolutio-
nal layers, attention layers, etc. Further neuron layer
types can be created by combining existing ones to
a more complex structure, by extending the internal
library, or by providing a layer implementation in Py-
thon. The neuron layer DAG representing the neural
network to be trained is created by interconnecting
the layer instances with each other using a conveni-
ent connector syntax. To facilitate the instantiation
of sequences of similar layers, the languages supports
layer structural parameters and layer stacking by de-
sign. For instance, the layer constructor parameters
can be given as lists instead of single values, indica-
ting that a layer sequence is to be created with each
element of the sequence being parameterized with the
corresponding parameter of the parameter list.

Each MontiAnna component requires a JSON-like
configuration file containing the hyperparameters for
the training. This way, the compiler toolchain is able
to detect all the deep learning components, locate the
training and test data, and conduct a training using
the given hyperparameters automatically. The compi-
ler toolchain keeps track of each component’s lifecy-
cle. When the component-based system is recompiled,
only those deep learning components are (re-)trained
which have no satisfying training results yet or who-
se training data or hyperparameter configuration have
been changed. Furthermore, if multiple component in-
stances of the same neural network exist in the system
and have the same training data attached to them,
training is performed only once and each instance reu-
ses the same trained weights. The development team
hence, does not need to take care of training and re-
training manually nor to write code for the training
procedure. To accomplish this, MontiAnna offers the
concept of training pipelines. A training pipeline is a
module encapsulating the training logic used at com-
pile (or training) time to optimize the weights of a
given machine learning model. Each pipeline has an
individual set of hyperparameters which can be set
and tuned by means of the aforementioned configura-
tion file.

MontiAnna was evaluated on multiple training pi-
pelines including supervised, generative adversarial,
reinforcement learning, and other learning approa-
ches. To facilitate maintainability and extensibility of
the pipelines, the hyperparameters for each pipeline
are defined in a separate schema model. The employ-
ed configuration schema framework supports inheri-
tance, thereby enabling the reuse and specialization
of configuration schemas. For instance, MontiAnna of-
fers multiple reinforcement learning pipelines having
overlapping sets of hyperparameters. The hyperpara-

meter set common to all these pipelines is defined in
an abstract reinforcement learning schema. The spe-
cialized schemas inherit from this general schema and
add their respective individual parameters.

Some pipelines require components at training ti-
me which become obsolete at runtime. For instance, in
reinforcement learning sometimes a second neural net-
work, the critic network, is used during training. The
component representing the critic network at training
time needs to be set using our configuration file in a
dependency injection manner. Instead of defining the
needed training time components in the schema mo-
dels, we introduce the concept of reference models. A
reference model is an EmbeddedMontiArc-based ar-
chitecture which is instantiated at training time. The
concrete components are injected via the configura-
tion file, i.e. the reference model serves as a handy
extension of the schema models.

Furthermore, a reference model serves as a struc-
tural foundation of the respective training pipeline,
enabling the pipeline developer to access the com-
ponents in the pipeline code. What’s more, by defining
the dataflows in the reference model explicitly, type
and compatibility checks of the training components
can be performed using the standard EmbeddedMon-
tiArc context conditions (for instance, the state type
of the actor network has to be the same as the one of
the critic network as these two are linked by a connec-
tor in the reference model).

The modeling approach presented in this thesis is
fully generative, i.e. complete, executable C++ and
python code is generated out of the models. Manual
code additions are neither required nor recommended.
For neural networks the user can choose between se-
veral state-of-the-art target platforms including MX-
Net Gluon, TensorFlow, and Caffe2.


