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Kurzfassung: Security breaches happen on a daily
basis and are a serious threat to our society. The ave-
rage cost of a data breach in 2021 has achieved the
highest record in the 17-year history of IBM’s Cost
of a Data Breach Report, rose from $3.84 million to
$4.24 million [1]. In May 2021, the American oil pi-
peline operator Colonial Pipeline had to pay 75 Bit-
coins (nearly $5 million) to recover its stolen data in a
ransomware attack that disrupted fuel supplies in the
northeastern United States [2]. Since the first release
of the German Luca app for contact tracing during
the COVID-19 pandemic, a chain of security vulnera-
bilities has been discovered and a great skepticism has
arisen [3][4]. Such incidents do not only cost a signifi-
cant amount of money and company reputation, but
can also be a threat to national security. As reported
in 2019, German Chancellor Angela Merkel and hun-
dreds of German politicians were hit by a data hack,
with confidential letters, contact information and par-
ty memos leaked on Twitter [5]. Ensuring security of
software applications is more important than ever in
today’s fast-paced technological world.

While there exist many techniques to ensure soft-
ware applications being built securely and cyber resili-
ent, attacks remain a potent threat due to the limited
effectiveness and adoption of these techniques. Static
taint analysis is a program analysis technique that can
be used to prevent a wide range of security vulnerabili-
ties and detect malicious software. As Figure 1 shows,
it tracks data flows from sensitive sources (e.g., API
which reads untrusted user input or private data) to
sensitive sinks (e.g., API which executes a dangerous
function or posts data to the internet). Such data flows
are called taint flows. Many well-known issues can be
triggered by taint flows, e. g., data theft, SQL injecti-
ons, cross-site scripting, etc. Although there have been
a wealth of static taint analysis tools created in both

Figure 1: How static taint analysis tracks data from a
source to a sink.

industry and academia, very few are widely used in
industry, despite the importance of the issues these
tools can detect. This dissertation investigates why
and focuses on improving the real-world applicabili-
ty of static taint analysis. It addresses three existing
problems that hinder the real-world adoption of static
taint analysis.

Problem 1: common benchmarks are small and
incomplete. Static taint analysis tools have been
mostly evaluated on micro benchmarks (small pro-
grams with artificially constructed vulnerabilities),
which are often designed by analysis builders to test
tool features, and are not representative of real-world
software applications (big and complex programs).
This leads to analysis tools that work well on micro
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Figure 2: Overview of the TaintBench framework.
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Figure 3: Results of experiment 1 (DB1 & TB1) and 2 (DB2 & TB2). Experiment 1: analysis tools are in
default configuration and evaluated on DroidBench (DB1) and TaintBench (TB1). Experiment 2: analysis tools
are configured with sources and sinks specified in the ground truth of DroidBench (DB2) and TaintBench (TB2)
respectively. * marks update-to-date tool versions.

benchmarks, but are less effective in finding real-world
issues. To address this problem, the first step is to con-
struct more realistic benchmarks. As the first contri-
bution of this dissertation, we constructed a realistic
malware benchmark suite for Android taint analysis.
We focus on Android in this work, but similar issues
occur in other settings too [6, 7, 8, 9]. The benchmark
suite, called TaintBench, is the first real-world suite
in this area with a documented baseline ground truth.
So far the ground truth of real-world benchmarks has
been rarely documented in past evaluations of static
taint analysis tools, although it is needed for reprodu-
cing the results.

Our TaintBench benchmark suite contains 39 mal-
ware applications with 249 documented benchmark
cases as the baseline ground truth. These bench-
mark cases contain both expected and unexpected ca-
ses. Expected cases are verified security issues which
should be detected by taint analysis tools, and unex-
pected cases specify false-positive cases which an im-
precise analysis tool might still report. Once a taint
analysis tool finds an expected case while analyzing
this benchmark app, it is counted as a true positive
(TP). A missed expected case is counted as a false
negative (FN). Consequently, found and missed un-
expected cases are counted as false positives (FP)
and true negatives (TN) respectively. Based on the
countings of TP, TN, FP and FN with regard to the
benchmark cases, accuracy metrics such as precision
(p = TP

TP+FP ), recall (r = TP
TP+FN ), and F-measure

(f = 2pr
p+r ) can be computed. These three metrics are

widely used and accepted in evaluations of static ana-

lysis tools.
Along with the suite, we developed the TaintBench

framework, an open source tool chain that supports
real-world benchmarking of Android taint analysis
tools. As shown in Figure 2, the tools are divided in-
to three parts that enable: (1) faster benchmark sui-
te construction, (2) reproducible evaluation of static
taint analysis tools with this suite, and (3) source code
inspection of analysis results. Using the TaintBench
suite and framework, we conducted 6 experiments
with different configurations to evaluate two versions
of popular static taint analysis tools—FlowDroid [10]
and Amandroid [11]. For comparison, we evaluated
the same analysis tools using the micro benchmark
suite DroidBench [12], which has been widely used for
benchmarking Android taint analyses. Our results in
Figure 3 show that these tools have much lower pre-
cision, recall and F-measure on real-world malware
apps in comparison to micro benchmark apps. Even
with an unrealistic configuration of these tools (i. e.,
tools are configured with sources and sinks used by
the malicious taint flows in experiment 2.), the ma-
jority of malicious taint flows in TaintBench remain
undetected.

We further investigated FlowDroid, which achie-
ved the best result with TaintBench in our evaluati-
on. Our investigation revealed that 35% of malicious
taint flows in TaintBench could not be detected by
FlowDroid because relevant methods were missing in
the call graphs. Call graphs are important building
blocks for inter-procedural static analysis, which are
difficult to create for modern framework-based appli-



Application
(.apk, .jar)

placeholder.jar
Construct Call Graph with 

Library.main()
Library.<clinit>() 

as entry points
Library 
(.jar)

Averroes-GenCG

Perform 
Taint 

Analysis

Library.class

Figure 4: Overview of the GenCG approach.

cations. Modern Java frameworks like Android, Spring
and Apache Struts are designed with the Inversion of
Control principle, which heavily makes use of the Java
reflection API that in turns makes finding reachable
code hard. This makes it extremely hard to predict the
behaviors of these frameworks by analyzing their co-
de statically. To be scalable, most static analysis tools
model the effects of frameworks rather than analyzing
them [13, 11, 10, 6]. FlowDroid, for example, models
the behavior of the Android framework by construc-
ting a dummy main method that simulates the lifecy-
cle of each Android component and starts the analysis
from there. However, this precise modeling is difficult
to maintain because every year a new version of An-
droid comes out with new APIs that introduce new
behaviors into the framework. Moreover, it is imprac-
tical to do this for every framework. FlowDroid has
such a hand-crafted model, but we show that it leads
to missing code, i.e., incomplete call graphs.

To ameliorate this problem, we created GenCG, a
new approach to creating a call graph that is more
complete, yet manageable. Our approach GenCG is
not limited to any particular framework or analysis
tool and is therefore highly reusable. In GenCG, we
developed the AverroesGenCG tool—an improvement
of Averroes [14], which generates a placeholder library
for a given Android/Java framework. This generated
placeholder can be used by common call graph con-
struction algorithms (e.g. VTA, RTA, Spark [15, 16])
and taint analysis as a replacement for the original
framework. The behavior of the framework is modeled
in the placeholder code and reflected in the construc-
ted call graphs. While a general approach can be noi-
sy (produces many false positives), our experiments
show that our carefully-constructed one does not sa-
crifice the precision. We evaluated our approach with
both DroidBench and TaintBench. It works especially
well on our real-world benchmark suite TaintBench:
both the precision (from 0.83 to 0.88) and the recall
(from 0.20 to 0.32) of FlowDroid are improved using
the call graphs constructed with our approach. On
DroidBench, we were not expecting significant diffe-
rence in the recall, as the false negatives produced by
FlowDroid are not mainly caused by incomplete call
graphs in these micro benchmark apps. Still the recall

is improved, as our approach allowed FlowDroid to
detect more taint flows. It produced a few more false
positives as we expected for such a general approach.
Nevertheless, the precision is only slightly decreased
(from 0.87 to 0.82). To show its generalizability, we
introduce how our approach can be applied to web
applications using the Spring framework. The evalua-
tion with a micro benchmark suite of 42 Spring-based
web applications shows promising results.

Problem 2: real-world issues often of limited
interest. Even given a complete enough call graph,
analysis precision is still key. In terms of improving
precision, various sensitivities are considered by sta-
tic taint analysis tools. To handle aliasing and virtual
dispatch in Java programs, static tools apply context-
, object-, and field-sensitivities. While a flow-sensitive
analysis takes the order of statements into account,
a path-sensitive analysis evaluates branch conditions.
Although most static taint analysis tools support mul-
tiple sensitivities at the same time, path-sensitivity is
usually left out, resulting in warnings that are either
unrealizable or that a given user will not care about
(e.g., issues exist in code targeting old hardware that
is not supported anymore). The third contribution of
this dissertation tackles this problem. We designed an
approach that computes partial path constraints to
enhance results produced by a client analysis. We im-
plemented a tool called COVA that combines data
flow analysis with the use of the satisfiability modulo-
theories solver Z3 [17]. COVA can be configured to
track information one is interested in, e.g., user in-
puts, I/O operations or system settings, and reasons
about the path constraints over such information for
each reachable statement in the program.

Using COVA, we conducted a qualitative study of
more than 28,000 taint flows from a large number
of real-world commercial Android applications. The-
se taint flows were generated by FlowDroid. We clas-
sified these taint flows using path constraints com-
puted by COVA. This allowed us to determine how
these taint flows depend on environment configurati-
on settings (e.g., platform versions), user interactions
(e.g., button usage), and I/O operations (e.g., rea-
ding and writing files) as Figure 5 shows: About 1/3
of taint flows are false positives that should be dis-



carded. About 4,000 taint flows are due to the three
factors we defined. In addition, 10% of taint flows can
be triggered at runtime only by certain user interacti-
ons (UI-constrained). Our results suggest that hybrid
approaches to dynamic validation of static taint flows
should focus on modeling user interactions, but should
also consider configuration and I/O to a limited ex-
tent. Based on these findings, we extended COVA to
not only compute the path constraint of a given in-
struction, but also to generate concrete user interac-
tions required to execute that instruction at runtime.
Experiments with a small sample of applications from
F-Droid [18] demonstrate the feasibility of this ap-
proach to generate valid user interactions to test ran-
domly selected program instructions. This approach
can be used to improve the accuracy of static taint
analysis, e.g. only taint flows that can be validated at
runtime should be reported to the user.

Problem 3: little adoption by developers.
Creating a sound, precise and scalable static analysis
tool is unfortunately not enough in practice. Softwa-
re developers are often faced with the task of learning
and applying a large number of technologies in far too
short a time. The secure usage of these technologies is
a major hurdle. Often, security is not explicitly tested.
Although security analysis such as static taint analy-
sis can help, current analysis tools are unfortunately
not well adopted by developers. As many recent stu-
dies have shown, these tools are not adopted if they do
not provide actionable results or if they do not present
them in a way that is understandable to developers
and integrated into developers’ workflow [9, 19, 20].

While static taint analysis tools can help developers
find security vulnerabilities in their code, such analy-
sis has been less used in interactive development en-
vironments (IDEs) such as Eclipse, IntelliJ, Android
Studio, and Visual Studio Code. However, IDEs would
be the ideal place for static analysis, and are desired
by developers. Even when there is IDE integration,
tools such as DroidSafe [13], Cheetah [21], and IBM

Figure 5: Different types of real-world taint flows.

Security AppScan [22] usually only support a particu-
lar IDE, as a significant technical effort is required to
integrate a particular analysis for a particular langua-
ge into a particular IDE. Given this effort, the sheer
variety of common tools and potentially useful ana-
lyses makes it impractical to develop every combina-
tion. To encourage better adoption of these tools by
developers, researchers need ways to make tools ea-
sier and faster to integrate into IDEs. As the fourth
contribution to this dissertation, we have developed
a general approach to integrating static analysis into
IDEs and editors—MagpieBridge. To show the gene-
ralizability of MagpieBridge, we integrated some ana-
lyses from academia into IDEs—FlowDroid [10], Co-
gniCrypt [23], and Ariadne [24], and two analysis tools
from industry—Facebook Infer [25] and Amazon Co-
deGuru Reviewer [26].

Nowadays, static taint analysis is mostly implemen-
ted in static application security testing (SAST) tools.
Many companies offer SAST tools as a service in the
cloud. The current solutions for interaction between
cloud-based SAST tools and developers are usually
web-based. Developers often find it cumbersome to
switch back and forth between IDE and web browser
when they want to fix the issues detected by these
tools in their code. Therefore, we conducted a multi-
stage user study with software engineers at Amazon
Web Services (AWS) to investigate how IDE support
for a purely cloud-based static analysis tool should
be designed to meet developer expectations. Based on
interviews with developers, we developed a prototy-
pe IDE support for the cloud-based SAST tool Ama-
zon CodeGuru Reviewer. We evaluated this prototy-
pe with 32 software engineers at AWS in a usability
test compared to the existing web-based solution. We
found that developers were three times more likely
to perform code scans with our IDE prototype than
with the web-based solution. They were also able to fix
issues identified by Amazon CodeGuru Reviewer fas-
ter in the IDE. However, we found that incorporating
the tool’s results into the IDE did not fully improve
developers’ workflow. Some developers had difficulty
understanding the asynchronous nature of the IDE so-
lution. They would like more, e.g. real-time feedback
on analysis progress, fast validation of fixes, etc.

Designing static taint analysis tools for the real-
world is challenging, which requires analysis builders
to not only find the best trade-off between precisi-
on, soundness and scalability, but also design tools
with good usability. With respect to these aspects, we
show static taint analysis needs to be refined for the
real world and that it can be improved by addressing
the above mentioned real-world problems. We hope
that the presented benchmarks, approaches, their im-
plementations and shared insights in this dissertation
can help static taint analysis builders to create better
tools and foster the adoption of static taint analyses



Figure 6: MagpieBridge connects arbitrary static analyses to arbitrary IDEs and editors.

by software developers to build more secure software.

Contributed publicly available artifacts in this
dissertation:

• TaintBench:https://taintbench.github.io

• COVA:https://github.com/secure-
software-engineering/COVA

• MagpieBridge:https://github.com/
MagpieBridge/MagpieBridge
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