
Evidence-driven Testing and Debugging
of Software Systems

Ezekiel Soremekun
SnT, University of Luxembourg

Luxembourg

Summary. This article is a summary of the disser-
tation titled “Evidence-driven Testing and Debugging
of Software Systems” [1] submitted in April, 2021 for
the degree Doctor of Engineering (Dr.-Ing.) in Soft-
ware Engineering at the Faculty of Mathematics and
Computer Science, Saarland University, Germany.

1 Introduction

Several techniques have been developed to support de-
velopers in software testing and debugging [2]. Howe-
ver, there is a gap between proposed techniques and
the actual state of software practice. Often, resear-
chers have found evidence of assumptions and tech-
niques that do not apply in practice [3]. Thus, confir-
ming that there is a gap between the state of the art
tools and how developers actually test and debug pro-
grams. For instance, most developers have never used
an automated fault localization (AFL) tool [3]. This
implies that we know very little about how developers
test and debug, and we lack the data and methods to
check (proposed) tools against practitioner’s needs.

How can we bridge this gap? In this thesis, we con-
duct several empirical studies to gather evidence from
software practice to effectively guide software testing
and debugging. We put forward the thesis that auto-
mated testing and debugging should be driven by em-
pirical evidence collected from software practice. We
posit that the feedback from software practice should
shape and guide testing and debugging tasks. Thus,
we focus on building tools and methods that are dri-
ven by empirical evidence collected from practice.

2 Research Challenges

In this thesis, we propose an evidence-driven approach
to address several challenges in software testing and
debugging. The main idea is to gather empirical evi-
dence from software practice to guide and support
testing and debugging activities. To achieve this, we
conducted several experiments to obtain empirical evi-
dence to guide the development of novel methods for
testing and debugging. We pose the following scientific
questions to empirically test our thesis statement:

1. How do developers debug and repair softwa-
re bugs? To address this, we conducted an empirical
study to collect data on the tools/strategies employed
by developers while debugging real faults [3]. Our stu-
dy includes a survey of over 200 developers and a hu-
man study where we observe 12 developers while they
debug 27 real bugs. In this study, we collected data

on the debugging needs of developers and the reasons
for developers (non-)adoption of debugging aids. In-
deed, we found that there is a gap between the needs
of developers and the tools provided by researchers.

2. What is the most effective automated fault
localization (AFL) technique? We have evaluated
the effectiveness of the state-of-the-art fault localiza-
tion techniques using hundreds of real faults [2]. We
examined the performance of 18 most effective stati-
stical debugging formulas against program slicing. We
also evaluate the impact of error type (artificial or re-
al faults) and the number of faults (single or multiple
faults) on the effectiveness of these AFL methods. In
our evaluation, we found that dynamic slicing is best
suited for diagnosing single faults, while, statistical
debugging performs better on multiple faults.

3. How can we automatically debug and repair
real-world invalid inputs? In the context of input
debugging, we evaluate the prevalence and causes of
invalidity in inputs using thousands of real-world in-
put files [4]. We found that four percent of input files
in the wild are invalid, they were either rejected by at
least one subject program or their input grammar. We
have also identified a number of causes of input inva-
lidity, such as wrong syntax and missing or noncon-
forming elements. For instance, we found that many
inputs were invalid because of single character errors,
due to a deleted, missing, or extraneous character.

4. Can we leverage real-world sample inputs
to guide test generation? We provide an approach
to automatically learn the distribution of input ele-
ments from sample inputs found in the wild, e.g., in-
puts written by developers and end-users [5]. Our ap-
proach employs probabilistic grammars to learn input
distribution and applies the learned grammars to ge-
nerate inputs that are similar or dissimilar to the in-
itial samples, such that we are able to generate inputs
(dis)similar to initial (human-written) inputs. During
debugging, this is useful for bug reproduction.

3 Contributions

This dissertation answers the aforementioned scienti-
fic questions via experiments and provides methods
to aid developers during debugging activities. We also
provide data and tools to help researchers in evalua-
ting debugging and repair tools. Specifically, this dis-
sertation makes the following technical contributions:



1. DbgBench. In our empirical study evaluating de-
bugging in practice, we have collected hundreds of real
world fault locations and patches provided by 12 de-
velopers while debugging 27 real bugs [3]. We provide
the empirical data from this study as a benchmark cal-
led DbgBench. DbgBench provides details on the
debugging needs of developers, as well as the tools
and strategies employed by developers when debug-
ging real faults. In addition, it is useful for the au-
tomatic evaluation of debuggers and automated repair
tools. Our evaluation setup, empirical data and expe-
rimental results are publicly available.1

2. Hybrid Fault Localization. Drawing from the
lessons from our study on the effectiveness of AFL
techniques, we have proposed a hybrid approach that
synergistically combines the strengths of dynamic sli-
cing and statistical debugging [2]. This hybrid ap-
proach combines the contextual information provided
by dynamic slicing and the fault correlation analysis
performed by statistical debugging to effectively dia-
gnose faults. Our evaluation showed that our hybrid
strategy overcomes the weaknesses of both slicing and
statistical fault localization. In our evaluation with
hundreds of faults, the best fault localization approach
is the hybrid strategy, regardless of the number or ty-
pe of program faults. The empirical data and results
obtained in this evaluation are publicly available.2

3. Maximizing Delta Debugging. Building on the
empirical results from our study on input invalidity,
we provide a black-box technique for automatically
diagnosing and repairing invalid inputs via test expe-
riments [4]. Our proposed algorithm (ddmax ) (1) iden-
tifies which parts of the input data prevent processing,
and (2) recover as much of the (valuable) input data
as possible. Through experiments, ddmax maximizes
the subset of the input that can still be processed by
the program, thus recovering and repairing as much
data as possible. The difference between the original
failing input and the “maximized” passing input in-
cludes all input fragments that could not be processed.
We provide our data and tool as an artifact.3

4. Probabilistic Test Generation. Applying pro-
babilistic grammars as input parsers, we show how to
learn input distributions from input samples, allowing
to create inputs that are (dis)similar to the sample [5].
Among many use cases, this method allows for the
generation of failure-inducing inputs – learning from
inputs that caused failures in the past gives us inputs
that share similar features and thus also have a high
chance of triggering bugs. This is useful for bug repro-
duction and testing the completeness of bug fixes. Our

1https://dbgbench.github.io
2https://tinyurl.com/HybridFaultLocalization
3https://tinyurl.com/debugging-inputs-icse-2020

evaluation shows that learning from failure-inducing
sample inputs effectively reproduces the same failure
and also reveal new failures. Our experimental setup,
evaluation data and results are publicly available.4

4 Conclusion and Future Work

This dissertation proposes an evidence-driven ap-
proach to address several challenges in software te-
sting and debugging. This work provides several em-
pirical data and methods to guide researchers to build
and evaluate testing and debugging aids. Our propo-
sed techniques are also useful to support developers
during testing and debugging activities.

This work opens the door for a number of exciting
future research opportunities. There are open research
challenges to address in the interplay of software prac-
tice and automated debugging. Our future work will
focus on the following open issues: We plan to conduct
empirical studies to investigate the impact of debug-
ging assumptions (e.g., perfect bug understanding [3])
on the productivity of developers and the effectiveness
of debugging techniques. In addition, given that dd-
max is a black-box approach, we are investigating how
to leverage program features to improve input repair.
This is important to effectively repair invalid inputs
for programs that silently handle failures, e.g. without
crashing. Lastly, we are investigating how to impro-
ve our test generation approach [5] to obtain program
feedback (e.g. coverage) and input feedback (e.g., in-
put features) to drive better test generation.

Literatur

[1] Ezekiel Olamide Soremekun. Evidence-driven te-
sting and debugging of software systems. 2021.

[2] Ezekiel Soremekun, Lukas Kirschner, Marcel
Böhme, and Andreas Zeller. Locating faults with
program slicing: an empirical analysis. Empirical
Software Engineering, 26(3):1–45, 2021.

[3] Marcel Böhme, Ezekiel O Soremekun, Sudipta
Chattopadhyay, Emamurho Ugherughe, and An-
dreas Zeller. Where is the bug and how is it fixed?
an experiment with practitioners. In Proceedings
of the 2017 11th joint meeting on foundations of
software engineering, pages 117–128, 2017.

[4] Lukas Kirschner, Ezekiel Soremekun, and Andre-
as Zeller. Debugging inputs. In 2020 IEEE/ACM
42nd International Conference on Software Engi-
neering (ICSE), pages 75–86. IEEE, 2020.

[5] Ezekiel Soremekun, Esteban Pavese, Nikolas Ha-
vrikov, Lars Grunske, and Andreas Zeller. In-
puts from hell learning input distributions for
grammar-based test generation. IEEE Transac-
tions on Software Engineering, 2020.

4https://tinyurl.com/inputs-from-hell


