
Consistent Feature-Model Driven Software Product Line Evolution

Dr.-Ing. Michael Nieke, Thesis Published: 2021-03-07

Summary. Software Product Lines (SPLs) are an
approach to manage variable families of closely rela-
ted software systems in terms of configurable functio-
nality, such as the control software of cars. A feature
model captures common and variable functionalities
of an SPL on a conceptual level in terms of features.
Reusable artifacts, such as code, documentation, or
tests are related to features using a feature-artifact
mapping. A product or variant of an SPL can be de-
rived by selecting features in a configuration which is
used in combination with the feature-artifact mapping
to collect a set of reusable artifacts. With an automa-
tic generation mechanism, the set of reusable artifacts
is composed to a product.

Over the course of time, SPLs and their artifacts
are subject to change. As SPLs are particularly com-
plex, as they represent hundreds of thousands or more
software systems at once, their evolution is a chal-
lenging task. To avoid errors introduced by ad-hoc
changes and the subsequent monetary loss, SPL evo-
lution must be thoroughly planned in advance. Ho-
wever, changing circumstances and requirements lead
to plans not turning out as expected and, thus, re-
planning is required. Feature models lean themselves
for driving SPL evolution as they serve as a main
communication artifact and represent functionality on
an abstract level without technical details. However,
radical changes to feature-model evolution plans can
lead to to inconsistencies as the basis for already plan-
ned subsequent evolution steps changes. These incon-
sistencies render the planned evolution useless. Moreo-
ver, feature-model anomalies that are an indicator for
errors may be introduced during evolution. Such an-
omalies may also be source for unnecessary variability
complexity, thus, leading to additional maintenance
effort. Consequently, relevant configurations may co-
me short during quality assurance as superfluous effort
is spent on obsolete feature combinations, e.g., confi-
gurations of a car that can never be produced. Current
feature modeling techniques are not able to ensure
feature-model consistency in presence of replanning,
and feature-model anomalies that have been introdu-
ced during evolution cannot be fixed efficiently.

Along with feature-model evolution, other SPL ar-
tifacts need to consistently evolve; especially for con-
figurations, e.g., if cars are provided with over-the-air
updates. Changes to an SPL may then result in unde-
sired behavior of a product. Thus, it is crucial to un-
derstand which product(s) (configurations) are affec-

ted in which way by an update. As different engineer
roles that are responsible for performing SPL evolu-
tion (domain engineers) and maintaining configurati-
ons (application engineers) typically cannot commu-
nicate with each other, product behavior may even
change unnoticed. As a result, products with changed
behavior may be deployed which may lead to failures
and, consequently, to additional costs, e.g., if products
must be recalled.

The work of this thesis provides remedy to the afo-
rementioned challenges by presenting an approach for
consistently planning and performing SPL evolution.
The main contributions of this thesis can be distin-
guished into three key areas: planning and replanning
feature-model evolution, analyzing feature-model evo-
lution, and consistent SPL artifact evolution. As a
starting point for SPL evolution, we introduce Tempo-
ral Feature Models (TFMs) that allow capturing the
entire evolution timeline of a feature model in one ar-
tifact, i.e., past history, present changes, and planned
evolution steps. Furthermore, temporal relations bet-
ween the changes are modeled as first-class entities
such that replanning and introduction of intermedia-
te evolution steps is possible. In our evaluation, we
show that TFMs fulfill crucial requirements for mo-
deling evolution timelines of feature models and we
used TFMs to model the evolution history of two in-
dustrial large-scale feature models. In addition to the
additional benefits to enable (re-)planning, the evalua-
tion showed that TFMs are significantly smaller than
the sum of the individual feature-model versions.

We provide an execution semantics of feature-
model evolution operations that guarantees consisten-
cy of feature-model evolution timelines. To this end,
we formalize feature-model evolution timelines and
feature-model evolution operations in terms of struc-
tural operational semantics. When new evolution ope-
rations are performed, all subsequent evolution steps
are checked for violations of the formalized evolution
operations. If an evolution operation would introduce
an inconsistency, the reason for that inconsistency is
presented and engineers cannot execute that evoluti-
on operations. This enables engineers to replan and
introduce intermediate evolution operations without
running into inconsistencies in later points in time.
In our evaluation, we have shown that inconsistencies
arising during feature-model replanning is an actual
problem in industry and that our method scales for
large-scale real-world feature models.

1



To reduce decay of feature models and highlight
sources for potential errors, we introduce analyses to
detect anomalies in feature-model evolution timelines.
As it is pivotal for engineers to be able to fix an an-
omaly, we provide them with the evolution step in
which that anomaly arose and with and explanati-
on of its cause. In contrast to existing explanation
methods, only highlighting structural properties of a
feature model leading to an anomaly, we additionally
identify the evolution operations the engineers per-
formed which caused that anomaly. This information
makes it easier for engineers to relate the anomalies to
their actions. In our evaluation, we have shown that
we correctly identify anomalies in evolution timelines
and their causing evolution operations. Furthermore,
the explanations in terms of evolution operations are
up to 95% shorter than state of the art explanations
of other tools.

To update products in the field after SPL evolu-
tion, we provide a methodology that enables domain
engineers to reason which product configurations are
affected in which way by an SPL update. Equipped
with this knowledge, our methodology enables domain
engineers to define automatically applicable update
operations for configurations. The information provi-
ded by domain engineers then guides application en-
gineers through configuration evolution, ensuring that
no product behavior is changed unnoticed. If product
behavior is changed, the engineers know it and can in-
itiate appropriate actions, e.g., testing products of the
respective configurations. In our evaluation using real-
world SPLs, we have shown that our method provides
additional benefit for updating for up to 81.2% of an
SPL’s configuration and it additionally detects pro-
duct behavior changes for up 55.3% of an SPL’s con-
figuration which would not have been detected using
other state of the art methods.

To enable easy application of our concepts, we im-
plemented the open-source tool suite DarwinSPL1

using a model-driven engineering approach. Darwin-
SPL provides user-friendly interfaces which hide the
technical intricacies of our methods from end users.
With the integration of all the aforementioned con-
cepts and methods, DarwinSPL can be used to plan
SPL evolution using a TFM. Its integrated and fully-
automated analyses ensure that no inconsistencies are
introduced and that developers are informed of an-
omalies and their explanations. With DarwinSPL,
domain engineers can define update operations for
configurations and application engineers can apply
them. The concepts and the implementation in Dar-
winSPL are evaluated using publicly available case
studies.

1https://gitlab.com/DarwinSPL/DarwinSPL


