
Predicting Scaling Efficiency of Distributed Stream Processing

Systems via Task Level Performance Simulation

Johannes Rank, Maximilian Barnert, Andreas Hein, Helmut Krcmar
Technical University of Munich

85748 Garching, Germany
{johannes.rank, maximilian.barnert, andreas.hein, helmut.krcmar}@tum.de

Abstract

Stream processing systems (SPS) are a special class
of Big Data systems that firms employ in (near) real-
time business scenarios. They ensure low-latency pro-
cessing through a high degree of parallelization and
elasticity. However, firms often do not know which
scaling direction: horizontally, vertically, or mixed,
is the best strategy in terms of CPU performance to
scale those systems. Especially in cloud deployments
with a pay-per-use model and cluster sizes that can
span dozens of cores and machines, firms would profit
from more accurate measurement-based approaches.
In this paper, we show how to predict the CPU con-
sumption of Apache Flink for different scaling sce-
narios using the Palladio Component Model. Our
approach models the individual streaming tasks that
make up the application and parametrizes it with fine-
grained CPU metrics obtained by combining BPF pro-
filing and querying the CPU’s performance measure-
ment unit. Through this “task-level model approach”,
we can achieve highly accurate predictions, despite
using a simple model and only requiring a few mea-
surements for parametrization. Our experiment also
shows that we achieve more accurate results than an
alternative approach based on regression analysis.

1 Introduction

Stream processing systems (SPS) are designed to con-
tinuously process large volumes of data at high speed
and with minimum latency. To achieve this, SPS of-
fer two flexible scaling options to cope with increased
load scenarios: vertical and horizontal scaling. Verti-
cal scaling refers to adding more resources to an exist-
ing machine (also known as scale-up). Horizontal scal-
ing refers to adding workers/nodes (we will use both
terms interchangeable) and distributing the workload
among the cluster (also known as scale-out). Both di-
rections also come with a performance drain. Scale-up
often increases the overhead on a single machine due
to increased state management, while scale-out often
results in protocol overhead [5]. To date, the most
common way to determine the most CPU-efficient
configuration of SPS is to measure each setting in-
dividually. However, especially in cloud deployments

for which costs are accounted on a per-use basis, such
an approach is time-consuming, costly, and becomes
increasingly infeasible the larger the cluster gets. For
this reason, we propose an approach that predicts the
CPU resource consumption for different cluster con-
figurations via a simulation approach, based on the
Palladio Component Model (PCM) [2]. We focus on
developing a simple and fast-to-implement approach
that focuses on a fine-grained depiction of the stream-
ing application’s inner workings by parameterizing the
individual streaming tasks that make up the applica-
tion. In this paper, we present our modeling approach
and demonstrate in an experiment how we predict the
resource consumption of Apache Flink, as one of the
most prominent streaming engines, for different clus-
ter configurations.

2 Modeling and Parametrization

How well an SPS can scale vertically or horizontally
depends on various factors. However, the streaming
application itself is the most significant factor for scal-
ing. The scaling direction affects each type of stream-
ing task to a different extent. For example, stateful
processing, as performed by windowing operations, of-
ten requires that events are grouped by a key before-
hand. A horizontal scaling approach hence results in
a re-partitioning of the events among the workers to
ensure that the same node processes all data items
with the same key. This induces overhead concern-
ing serialization and network transmission. Hence,
understanding the internal performance behavior of
the streaming application and how it is influenced by
different scaling directions, is a key insight when sim-
ulating an SPS. We demonstrate our approach based
on the Yahoo Streaming Benchmark (YSB) [4]. As
depicted in Figure 1, the YSB is a full application
benchmark that features a chain of common stream-
ing tasks (e.g. Deserialize, Filter, Projection, Join,
Window) including a KeyBy to re-partition the data
stream among workers. The performance will be con-
siderably influenced by the number of worker nodes,
making the YSB an ideal candidate for our simulation.
As a streaming engine, we use Apache Flink, a sophis-
ticated engine widely used in the industry. We use a

KeyByConsume

Deserialize

Filter

JoinProjection Sink

Redis

<<InternalAction>>
Kafka

ResourceDemand

(- 0.1668*
load_per_node.
VALUE ^ 2) + (1

<<InternalAction>>
JSON_Deserialize

ResourceDemand

30.806 *
load_per_node.

<<InternalAction>>
Filter_Projection_Join

ResourceDemand

17.461 *
load_per_node.
VALUE 180 48 C

<<InternalAction>>
Enrich

ResourceDemand

4.5348 *
load_per_node.
VALUE 16 765 C

<<InternalAction>>
Netty_keyby

ResourceDemand

- 0.0471*
redistributed_event

<<InternalAction>>
RecordDeSerialization

ResourceDemand

19.444 *
load_per_node.
VALUE + 244 01 <C

<<InternalAction>>
Window_Sink

ResourceDemand

9.1259 *
load_per_node.
VALUE 326 7

<<InternalAction>>
Other

ResourceDemand

- 0.0392*
load_per_node.
VALUE ^ 2 54 3

<SEFF Workers>

<<ExternalCallAction>>
DistributeToWorkers
Loaddistribution.IBench.OperationRequiredRole1.bench

InputVariableUsageCompartment

load_per_node

VALUE = load.VALUE
/ workers.VALUE

redistributed_events

VALUE = (((load.VALUE
/ workers.VALUE) /

<Benchmark>

Window

Kafka
<SEFF LoadDistr.>

Figure 1: The YSB’s Service Effect Specifications

constant workload of 600k events per second (e/s), as
this results in solid base utilization of 60%.

In this work, we have six cluster configurations
available that are defined as N<x> C<x> where
N defines the number of workers and C the available
physical CPU cores on a single node. All configu-
rations use 12 physical CPU cores but spread these
resources among a variable number of nodes, giving
us the cluster configurations N1 C12, N2 C6, N3 C4,
N4 C3, N6 C2 and N12 C1. This reflects a common
real-world deployment scenario e.g. when deciding be-
tween using two MS Azure NC6s instances (6 vCPUs /
4.254$/h) or one NC12s (12 vCPUs / 8.508 $/h). Our
usage model uses an open workload with an interar-
rival time of 1/600, because events arrive at a fixed
rate and do not re-enter the system. The system entry
call uses load and workers as variables. Load speci-
fies the data rate (e/s) and workers the number of
nodes for which the simulation shall be applied. We
only have a single resource container that specifies 48
vCPUs with a processing rate of 4.2 GHz. We only
require a single System- and Allocationmodel. Hence,
the user only needs to change the worker and load
parameters as part of the Usage Scenario to simu-
late different cluster sizes. We have two basic com-
ponents. The “Load distribution” is a virtual helper
component to mimic the load distribution that Kafka
provides via its partition concept. Due to our sim-
plified PCM model (that does not model different re-
source environments), we model the resource demand
in dependence of the load per node. This means the
more workers we have (scale-out), the less events a
single worker receives. As shown in Figure 1 the
SEFF of the load distribution calculates load per node
as well as the number of redistributed events. Redis-
tributed events is the number of events that a single
node in the cluster will send and receive as part of the
KeyBy task (the YSB uses a uniform distribution).
The workers’ SEFF finally depicts the actual task-
level performance behavior. We model one internal
action for every streaming task of the YSB. In addi-
tion, the Other task accounts for general framework
overhead such as Garbage Collection. Modelling each
task, allows us to specify individual resource demand
functions, which will greatly increase the prediction

accuracy. For the parametrization we will perform
measurments based on the toolchain we presented in
[3]. The toolchain profiles the application using the
extended Berkley Package Filter (eBPF), which sam-
ples stacktraces in kernel space (greater efficiency than
other profilers) and also queries the performance mea-
surement unit of the CPU. Both results will be com-
bined to obtain the CPU cycles consumed by the indi-
vidual tasks of the streaming applicaiton. We need to
measure the minimum and maximum scale-out con-
figurations (N12 C1 and N2 C6), and the single node
configuration (N1 C12). As shown in Figure 2 the
first row depicts the total CPU resources consumed
by the different clusters (vCPUs). Most tasks profit
from a scale-up scenario, which is especially evident
when looking at the KeyBy task. Since our simplified
PCM approach simulates the CPU consumption of a
single node (the user will need to manually multiply
the prediction result with the number of workers to
get the total utilization), we also need the resource
demand for a single node. The first step is hence
to divide for each measurment the total consumption
by the respective number of nodes (N). As our re-
source demand will be specified as consumed CPU
cycles per event, we need to transform both axis. On
the x-axis we translate the cluster configuration as the
load per node (600k e/s / nodes), whereas on the y-
axis we will multiply the used cores with the process-
ing rate (4.2 GHz) and divide by the load (600k) to get
the consumed cycles for a single event [Step2]. Finally,
based on the three measurments we can calculate the
trendlines. Depending on the curve, we will approx-
imate via a linear or a polynomial function (choose
highest R-squared). These will be our resource de-
mand functions, while (x) is the number of processed
events on a single node of the respective cluster config-
uration (e.g. 600 for N1, 50 for N12). For the KeyBy
trendline we will use the redistributed events rather
than the number of processed events.

3 Experiment

In this experiment, we predict the CPU consump-
tion for the cluster configurations N3 C4, N4 C3, and
N6 C2 and compare the results with actual measure-
ments. Our test environment is an IBM E870 server
with 40 Power8 cores (4.2 GHz) and SMT4 setting.
We also perform a regression analysis based on the
measured total CPU consumption to test if the task-
level approach has advantages over a simple black-
box approach. As illustrated in Figure 3 we used
the same three measurement points (N1 C12, N2 C6
and N12 C1) to build a logarithmic and a polyno-
mial regression function. This way we predicted the
CPU utilization via our task-level approach (TCUT),
the logarithmic regression (LCUT), and the polyno-
mial regression (PCUT). The RMSEs are calculated
by comparing the predicted values with the measured
CPU utilization (MCUT). As shown by the RMSE,

C

yc
le

s
#

C
or

es

C
or

es

0.0

0.2

0.4

0.6

0.0

2.0

4.0

1.6

1.7

1.8

1.9

0.0

0.5

1.0

1.5

0.0

2.0

4.0

6.0

0
2
4
6
8

10
12
14

2.4

2.6

2.8

3.0

1.4

1.5

1.6

1.7

y = -0.1668x2

+192.47x
-2403.5

0k

20k

40k

60k

0

1
5

0

3
0

0

4
5

0

6
0

0

7
5

0

y = 30.806x
+ 21.186

R² = 0.9996

0k

10k

20k

0

1
5

0

3
0

0

4
5

0

6
0

0

7
5

0

y = 17.461x +
180.48

R² = 0.9976 -

0k

5k

10k

15k

0

1
5

0

3
0

0

4
5

0

6
0

0

7
5

0
y = 4.5348x

- 16.765

R² = 0.9999

0.0k

1.0k

2.0k

3.0k

0

1
5

0

3
0

0

4
5

0

6
0

0

7
5

0

y =
-0.0351x2

+ 19.091x +
1182.6…0.0k

2.0k

4.0k

0

1
5

0

3
0

0

4
5

0

6
0

0

7
5

0

y = 19.444x
+244.01

R² = 0.9979

0k
2k
4k
6k
8k

10k
12k
14k

0

1
5

0

3
0

0

4
5

0

6
0

0

7
5

0

y = 9.1259x +
326.7

R² = 0.9914
0k
1k
2k
3k
4k
5k
6k
7k

0

1
5

0

3
0

0

4
5

0

6
0

0

7
5

0

y =
-0.0392x2 +

54.304x
-344.740k

5k

10k

15k

20k

0

1
5

0

3
0

0

4
5

0

6
0

0

7
5

0

JSON Deser. Filter+Projection
+Join

Enrich KeyBy Net. (De-)Serial. Windowing + Sink OtherKafka

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

1.0

2.0

0.0

0.5

1.0

0.0

1.0

2.0

3.0

0.0

5.0

10.0

0.0

1.0

2.0

3.0

0.0

1.0

2.0

Step2: Calculate CPU cycles per event by multiplying core consumption with the processing rate (4.2 GHz) and dividing by the load (600k). The x-axis becomes the number of
processed events on a single node for the respective cluster configuration (e.g. 600 for N1_C12, 50 = N12_C1). For KeyBy use the number of redistributed_events instead.

y =
-0.0471x2 +
26.617x +

5.2509
0.0k

2.0k

4.0k

0

1
5

0

3
0

0

4
5

0

Step1: Calculate CPU consumption per task and node (divide by N)

Figure 2: Parametrization Approach

y = -0.5429x2 + 7.9266x +
9.8238

y = 3.4445ln(x) + 18.846
R² = 0.82550

10
20
30
40
50
60

0 2 4 6 8 10 12 14

15
17
19
21
23
25
27
29
31
33
35
37
39

0 1 2 3 4 5 6 7

#C
o

re
s

MCUT

TCUT

LCUT

PCUT

Avg
MCUT

0.19 0.66 0.39
2.80 2.85 1.95

3.29

6.48

10.90

0

2

4

6

8

10

12

N3_C4 N4_C3 N6_C2
TCUT LCUT PCUT

RegressionPrediction

Nodes

N
1

_C
1

2

N
2

_C
6

N
3

_C
4

N
4

_C
3

N
6

_C
2

N
1

2
_C

1

#Cores

#Cores RMSE

Figure 3: Prediction Results

TCUT achieves accurate results for all three cluster
configurations, while both regression methods were
not sufficient.

4 Related Work

One of the first approaches to predicting SPS perfor-
mance was proposed in [1]. Based on PCM, they sim-
ulated the response-time of Spark Streaming for an
upscaling scenario and achieved quite accurate results
with prediction errors between 0.67% and 21.14%. A
similar approach was presented in [6], predicting the
response time for different framework configuration
settings. However, both approaches differ from ours
in that they do not predict CPU utilization and but
use a simple wordcount example instead of a stream-
ing application that is richt in its task variations.
While there is research that simulated the utilization
of Apache Storm’s bolts using stochastic petri nets
[7], they did not translate performance as total CPU
utilization and did not show how they estimated the
parametrization. Also, they did not predict any scal-
ing scenarios.

5 Conclusion

In this paper, we proposed a new approach for predict-
ing the CPU consumption of SPS for different scaling
scenarios. By modeling the streaming application on
task-level, we intended to build a simple PCM model

that is fast and easy to implement while still achiev-
ing accurate prediction results. In an experiment, we
demonstrated our approach by simulating the CPU
consumption of Apache Flink when running the YSB
in different scaling scenarios. We only required the
measurement of three configurations to obtain the
model parametrization. We then simulated three dif-
ferent cluster configurations and achieved highly ac-
curate results. Our approach also outperformed an
alternative prediction via a regression analysis.

References

[1] J. Kroß and H. Krcmar. “Modeling and simu-
lating Apache Spark streaming applications”. In:
Softwaretechnik-Trends 36.4 (2016), pp. 1–3.

[2] R. H. Reussner et al. Modeling and simulating
software architectures: The Palladio approach.
MIT Press, 2016.

[3] J. Rank, A. Hein, and H. Krcmar. “A Dynamic
Resource Demand Analysis Approach for Stream
Processing Systems”. In: Softwaretechnik-Trends
40.3 (2020), pp. 40–42.

[4] S. Chintapalli et al. “Benchmarking Streaming
Computation Engines: Storm, Flink and Spark”.
In: 2016 IEEE Intern. Parallel and Distributed
Processing Workshops, pp. 1789–1792.

[5] K. e. a. Hwang. “Scale-Out vs. Scale-Up Tech-
niques for Cloud Performance and Productivity”.
In: 2014 IEEE 6th Intern. Conference on Cloud
Computing Technology and Science, pp. 763–768.

[6] J. Lin et al. “Modeling and simulation of Spark
Streaming”. In: AINA 2018, pp. 407–413.

[7] J.-I. Requeno, J. Merseguer, and S. Bernardi.
“Performance analysis of Apache Storm applica-
tions using stochastic Petri nets”. In: IRI 2017.
IEEE, pp. 411–418.

	Introduction
	Modeling and Parametrization
	Experiment
	Related Work
	Conclusion

