
Cloud-Native Scalability Benchmarking with Theodolite:

Applied to the TeaStore Benchmark

Sören Henning, Benedikt Wetzel, Wilhelm Hasselbring
{soeren.henning@email, stu126940@mail, hasselbring@email}.uni-kiel.de

Software Engineering Group, Kiel University, Germany

Abstract

Theodolite is a framework for benchmarking the scal-
ability of cloud-native applications such as microser-
vices. It automates deployment and monitoring of a
cloud-native application for different load intensities
and provisioned cloud resources and assesses whether
specified service level objectives (SLOs) are fulfilled.
Provided as a Kubernetes Operator, Theodolite inte-
grates with the cloud-native ecosystem and runs ex-
isting deployment configurations of various systems-
under-test, load generators, and benchmarks. We give
a presentation on Theodolite and exemplify its usage
by benchmarking the scalability of the TeaStore mi-
croservice reference application.

1 Introduction

Over the last decade, cloud-native became a pre-
ferred way of designing, implementing, and operating
large-scale software systems [3]. Microservice archi-
tectures are a pattern, particularly suited for building
cloud-native applications [2]. Supported by declara-
tive APIs, immutable infrastructure, and container-
ization, individual microservices are independently
scalable [4]. In fact, scalability is often mentioned as a
key driver for adopting microservices and cloud-native
architectures [5, 7, 8]. Despite this, however, we found
that research is lacking a commonly accepted method
to benchmark scalability [14]. Since benchmarking is
an essential empirical standard in software engineer-
ing research [11], such methods and tools are required
to benchmark scalability of cloud-native applications.

After presenting our roadmap toward efficient scal-
ability benchmarking [10] and advocating Kuber-
netes Operators for cloud-native benchmarking [13]
in the previous two editions of SSP, we now give a
demonstration of Theodolite.1 Implemented as a Ku-
bernetes Operator, Theodolite automates scalability
benchmarking of cloud-native applications, running
in Kubernetes. It is open-source research software
and can easily be installed via Helm. To exemplify
Theodolite’s usage, we benchmark the TeaStore [6], a
microservice reference application for benchmarking,
modeling, and resource management research.

1https://www.theodolite.rocks

2 Theodolite’s Benchmarking Method

Theodolite adopts established definitions of scalability
in cloud computing for its benchmarking method [14].
It quantifies scalability by running isolated experi-
ments for different load intensities and provisioned re-
source amounts, which assess whether specified SLOs
are fulfilled. Two metrics are available: The resource
demand metric describes how the amount of minimal
required resources evolves with increasing load inten-
sities, while the load capacity metric describes how
the maximal processable load evolves with increasing
resources.

The terms load, resources and SLOs are consciously
kept abstract as Theodolite leaves it to the bench-
mark designer to define what type of load, resources,
and SLOs should be evaluated. For example, hori-
zontal scalability can be benchmarked by varying the
amount of Kubernetes Pods, while vertical scalability
can be benchmarked by varying CPU and memory
constraints of Pods.

To balance statistical grounding and time-efficient
benchmark execution, Theodolite comes with different
heuristics for evaluating the search space of load and
resource combinations. Other configuration options
include the number of repetitions, the experiment and
warm-up duration, as well as the amount of different
load and resource values to be evaluated.

Theodolite distinguishes between benchmarks and
their executions. Benchmarks define the deployment
of the system-under-test (SUT) and the load gener-
ator as well as supported load dimensions, resource
dimensions, and SLOs. Executions configure the ex-
perimental setup of a single benchmark execution, in-
cluding options such as experiment durations and rep-
etitions, the scalability metric, or the search heuris-
tic. Both benchmarks and executions are defined in
YAML files (Kubernetes custom resources), which can
be deployed to the Kubernetes API, from where they
are picked up by Theodolite [13].

3 Benchmarking the TeaStore’s Scala-
bility with Theodolite

Theodolite aims to support scalability benchmarking
of arbitrary cloud-native applications without making
Theodolite-specific adjustments to the SUT and with-

https://www.theodolite.rocks


Envoy

Teastore-WebUI

Envoy

Teastore-WebUI

Envoy (OSM)

TeaStore

Recommender

Envoy

Teastore-WebUI

Envoy

Teastore-WebUI

Envoy

Teastore-WebUI

Envoy

Teastore-WebUI

Envoy

Teastore-WebUI

Envoy

Teastore-WebUI

Envoy

Teastore-WebUI

Envoy

Teastore-WebUI

Envoy

Teastore-WebUI

Envoy

Teastore-WebUI

Envoy (OSM)

TeaStore

Image

Envoy (OSM)

TeaStore

Auth

Envoy (OSM)

TeaStore

Persistence

Envoy (OSM)

TeaStore

WebUI

Envoy (OSM)

TeaStore

Database

Theodolite

Prometheus

Grafana

Benchmark

Results

SUT

Load
Generator

Envoy (OSM)

TeaStore

Registry

starts/stops

monitors

queries

queries

stores

Envoy (OSM)

JMeter

Figure 1: Benchmark deployment of the Theodolite stack, the TeaStore as SUT, and the JMeter load generator.

out SUT-specific adjustments to Theodolite. This in-
cludes real-world systems, publicly available bench-
marks, and load generator tools. We demonstrate how
Theodolite can benchmark third-party applications by
benchmarking the TeaStore [6], a microservice refer-
ence application consisting of six microservices and a
MariaDB database. It resamples a web shop for tea,
allowing customers, for example, to browse the shop
catalog, receive product recommendations, or place
orders.

3.1 Benchmark Design

A Theodolite benchmark defines both the SUT and
the load generator as references to Kubernetes re-
source files, specifying their deployments. Fig. 1
shows the overall benchmarking deployment, consist-
ing of the TeaStore as SUT, JMeter as load generator,
and the Theodolite stack. The latter consists of the
Theodolite Kubernetes operator itself, a Prometheus
instance that collects and manages performance met-
rics of the SUT, and a Grafana instance for benchmark
observability. Finally, benchmark results are written
to a Kubernetes volume, from where they can be fur-
ther analyzed and visualized with Jupyter notebooks.

Supported load and resource dimensions are de-
fined as transformation functions on these resource
files. When running a benchmark, Theodolite uses
these functions to adjust the SUT and the load gener-
ator deployments for different load and resource val-
ues, before starting and stopping these deployments.

A benchmark defines SLOs as PromQL queries
associated with aggregation functions and a thresh-
old. For each evaluated load-resource combination,
Theodolite uses these queries to request monitoring
data from Prometheus and checks the aggregated data
against the defined threshold. Our Theodolite bench-
mark for the TeaStore is defined as follows:

SUT The TeaStore comes with Kubernetes files,
which we can directly use in our benchmark. While
the TeaStore integrates application-level monitoring
with Kieker [1, 9], we require higher-level metrics
such as latency of requests between services. There-
fore, we deploy the TeaStore along with Open Service
Mesh (OSM). OSM injects an Envoy proxy to each
TeaStore service, which monitors incoming and out-
going network traffic and expose corresponding per-
formance metrics in Prometheus’ data format. To ac-
tually see scaling effects, we restrict the containers
of the WebUI, Image, Auth, and Recommender mi-
croservices to 0.5 CPU cores and 1 GB memory. For
demonstration purposes, we do not use separate nodes
for the SUT, the load generation, and experiment con-
trolling. However, this could easily be achieved by
configuring Kubernetes node affinities.

Load Generator For generating load on the TeaS-
tore, we deploy JMeter within our cluster and use the
“browse” profile [6], provided as part of the TeaStore.

Load Dimension The load with which we scale is
the number of concurrent users configured in JMeter.
Each user creates a sequence of requests to the WebUI
service, resulting in approximately 25–30 requests per
user and second.

Resource Dimensions We choose two types of re-
source scaling: 1) We scale the number of instances for
each of the WebUI, Image, Auth, and Recommender
services (benchmarking horizontal scalability). 2) We
stick to one instance per service, but scale the amount
of provided CPU cores and memory for each service
(benchmarking vertical scalability).

SLO To consider a certain load intensity to be han-
dleable by a certain amount of instances, we require



0 10 20 30 40 50
number of concurrent users

0

2

4

6

8

10

12

14

16

18

nu
m

be
r o

f i
ns

ta
nc

es

Figure 2: Results for benchmarking the horizontal
scalability of the TeaStore.

that the 95th percentile latency of requests to the
WebUI service does not exceed 200 ms.

3.2 Benchmark Execution

We run our experiments in a Kubernetes cluster, con-
sisting of 5 bare-metal nodes with each 384 GB mem-
ory and 32 CPU cores. For all benchmark execu-
tions, we use the load capacity metric with Theodo-
lite’s lower bound, linear search strategy [14]. In man-
ual experiments, we found that after 10 minutes of
warmup the WebUI response latencies are quite sta-
ble. Thus, we run each experiment of a certain load in-
tensity with a certain amount of resources for 20 min-
utes, while discarding the measurements of the first
10 minutes. For benchmarking horizontal scalability,
we vary the number of pod instances from 1 to 20,
while for vertical scalability we vary the pod’s CPU
resources from 0.5 to 8 cores and, proportionally, the
pod’s memory from 1 GB to 16 GB. We generate load
with 5 to 50 concurrent users, resulting in a runtime
of over 12 hours per benchmark execution.

3.3 Benchmark Results

Fig. 2 shows the results of our horizontal scalability
benchmark. We can see that the required number of
pods (for each microservice) scales approximately lin-
early with the amount of concurrent users. In our
benchmark execution for vertical scalability, we ob-
served that 5 concurrent users could be served by pro-
viding 1.5 CPU cores and 3 GB memory to each ser-
vice. Higher amounts of concurrent users could not
be handled, irrespective of the provisioned resources.
While a detailed analysis is beyond the scope of this
demonstration, we suspect that higher loads could still
be processed by tuning the number of threads or ac-
cepting connections.

4 Conclusions and Outlook

In this paper, we demonstrated Theodolite’s bench-
marking method by benchmarking horizontal and ver-

tical scalability of the TeaStore. We will publish
our experimental setup as an example in Theodo-
lite’s online documentation and submit a pull re-
quest to the TeaStore’s GitHub repository. Ongoing
research in the Theodolite project includes explor-
ing scalability along multiple load and resource di-
mensions. Besides “classical”, REST-based microser-
vices, we are also actively studying the scalability of
event-driven microservices and provide corresponding
benchmarks [12].

References
[1] A. van Hoorn, J. Waller, and W. Hasselbring. “Kieker: A

Framework for Application Performance Monitoring and
Dynamic Software Analysis”. International Conference
on Performance Engineering. 2012.

[2] A. Balalaie, A. Heydarnoori, and P. Jamshidi. “Mi-
croservices Architecture Enables DevOps: Migration to a
Cloud-Native Architecture”. IEEE Software 33.3 (2016).

[3] D. Gannon, R. Barga, and N. Sundaresan. “Cloud-
Native Applications”. IEEE Cloud Comput. 4.5 (2017).

[4] W. Hasselbring and G. Steinacker. “Microservice Ar-
chitectures for Scalability, Agility and Reliability in E-
Commerce”. International Conference on Software Ar-
chitecture. 2017.

[5] N. Kratzke and P.-C. Quint. “Understanding cloud-
native applications after 10 years of cloud computing
- A systematic mapping study”. Journal of Systems and
Software 126 (2017).

[6] J. von Kistowski et al. “TeaStore: A Micro-Service Ref-
erence Application for Benchmarking, Modeling and
Resource Management Research”. IEEE International
Symposium on the Modelling, Analysis, and Simulation
of Computer and Telecommunication Systems. 2018.

[7] J. Soldani, D. A. Tamburri, and W.-J. Van Den Heuvel.
“The pains and gains of microservices: A Systematic grey
literature review”. Journal of Systems and Software 146
(2018).

[8] H. Knoche and W. Hasselbring. “Drivers and Barriers
for Microservice Adoption – A Survey among Profession-
als in Germany”. Enterprise Modelling and Information
Systems Architectures (EMISAJ) – International Jour-
nal of Conceptual Modeling 14.1 (2019).

[9] W. Hasselbring and A. van Hoorn. “Kieker: A monitor-
ing framework for software engineering research”. Soft-
ware Impacts 5 (2020).

[10] S. Henning and W. Hasselbring. “Toward Efficient Scal-
ability Benchmarking of Event-Driven Microservice Ar-
chitectures at Large Scale”. Softwaretechnik-Trends 40.3
(2020). Symposium on Software Performance.

[11] W. Hasselbring. “Benchmarking as Empirical Standard
in Software Engineering Research”. Evaluation and As-
sessment in Software Engineering. 2021.

[12] S. Henning and W. Hasselbring. “Theodolite: Scalability
Benchmarking of Distributed Stream Processing Engines
in Microservice Architectures”. Big Data Research 25
(2021).

[13] S. Henning, B. Wetzel, and W. Hasselbring. “Repro-
ducible Benchmarking of Cloud-Native Applications
With the Kubernetes Operator Pattern”. Symposium on
Software Performance. 2021.

[14] S. Henning and W. Hasselbring. “A Configurable
Method for Benchmarking Scalability of Cloud-Native
Applications”. Empirical Software Engineering 27.6
(2022).


	Introduction
	Theodolite's Benchmarking Method
	Benchmarking the TeaStore's Scalability with Theodolite
	Benchmark Design
	Benchmark Execution
	Benchmark Results

	Conclusions and Outlook

