
Instrumenting Python with Kieker

Serafim Simonov
Kiel University

stu126367@mail.uni-kiel.de

Thomas F. Düllmann
HITeC e.V.

duellmann@hitec-hamburg.de

Reiner Jung
Kiel University

reiner.jung@email.uni-kiel.de

Sven Gundlach
Kiel University

sven.gundlach@email.uni-kiel.de

Abstract

Python has become a widely used programming lan-
guage in big data, machine learning, and scientific
modeling. In all these domains, performance is a key
factor to success and requires the ability to under-
stand the runtime behavior of software. Therefore,
we ported Kieker monitoring to Python and evaluated
different approaches to introduce probes into code.

In this paper, we evaluate these approaches, show
their benefits and limitations and provide a perfor-
mance evaluation of the Kieker 4 Python framework.

1 Introduction

Python is a versatile programming language that sup-
ports object-oriented, functional, and imperative pro-
gramming. It has mostly been used in desktop ap-
plications, but in recent years it has become a widely
used in application in areas such as data analysis, big
data, machine learning, and scientific modeling. It
can be used as a programming language and as a host
language for frameworks implemented in C or other
compiled languages. Due to the script-like nature of
Python, it allows users to integrate specific frame-
works quickly and interactively. Tools, like Jupyter
[6], are built upon these abilities and are widely used.

Performance and understanding software behavior
are key issues in these application domains. This can-
not be determined by means of static analysis. There-
fore, we have to instrument the source code to be able
to collect traces. Kieker [1, 8] already provides the ba-
sic infrastructure for collecting traces, but the seam-
less introduction of probes in Python is limited.

While Python provides facilities to weave and deco-
rate methods and functions on its own, these features
can also be used by other programmers in their soft-
ware for their code. This affects how we can introduce
instrumentation and can, in some cases, limit our abil-
ity to instrument and decorate.

In this paper, we discuss different working ap-
proaches for instrumentation, show their limits and
application. In addition, we present preliminary per-
formance measurements of our instrumentation based
on the micro benchmark MooBench [3, 5].

2 Case Studies

To cover a diverse set of Python code, we used the
Spyder cross-platform software development IDE and
TensorFlow, a Python machine learning framework.

Due to their different structure and design, they
both constitute unique challenges in terms of applica-
tion monitoring and inserting instrumentation.

Spyder is an open source IDE for Python that is
written in Python. It was the first multi-threaded real
world application that we used to test a non-intrusive
instrumentation approach, using post import weaving.

As Spyder is a desktop application, it produces
one huge trace when the whole application is instru-
mented. Thus, we used the new architecture visual-
ization of Kieker that does not rely on trace recon-
struction, but only on calls.

TensorFlow (TF) is a framework for machine
learning applications that are written in Python [4].
While the machine learning community is interested
in the accuracy and other properties of the predic-
tion performance, we want to learn more about the
application performance. Therefore, we observe TF
at runtime. Therefore, we utilized the Kieker Python
probe and instrumentation techniques.

Unfortunately, the post import technique can only
instrument parts of TF, as TF uses itself weaving and
manipulates the Python Dictionary. The pre import
technique provides a more comprehensive instrumen-
tation of TF, but still has limitations.

While TF as a whole is rather difficult to instru-
ment, we were able to get some results regarding the
Keras module already, which is part of TF. As a result,
we were able to extract first component dependency
graphs from the Kieker traces. Due to size limitations,
we omit the graphics here.

3 Instrumenting Python

Python is a very flexible and versatile programming
language. It supports a range of object-oriented pro-
gramming patterns that can be used to realize weav-
ing of monitoring probes. The same facilities can also
be used by others. Thus, there can be conflicts and



obstacles that limit our ability to utilize these facili-
ties in any scenario. Therefore, we implemented two
different automatic instrumentation approaches and
provide the option to apply instrumentation manually
for cases both automatic approaches fail.

In the following subsections, we introduce the man-
ual instrumentation, as well as two automatic instru-
mentation methods based on the decorator pattern.

3.1 Manual Instrumentation

We can use the Kieker 4 Python API to instrument
the Python code manually. The writing of the records
is controlled by SingleMonitoringController class,
that must be instantiated once in the beginning of
the program. We can collect and store the informa-
tion in record objects, e.g. BeforeOperationEvent.
The invocation new_monitoring_record() with the
record object passed as a parameter triggers internally
a routine that writes the records either directly in to a
local file or sends them via TCP to a remote receiver.
Which writing method is used depends on the Kieker
4 Python configuration.

3.2 Post Import Weaving

Post import weaving is an approach discussed in liter-
ature [2] and used by other developers [7]. Here, func-
tions are replaced by their decorated counterparts.
The PostImportFinder collects modules for instru-
mentation and utilizes a specific module loader to load
the module and modify the functions in them.

While this approach allows to instrument functions
seamlessly, there are limitations. The code of the in-
strumented software might also employ this approach
to monitor security violations [7]. Thus, modules and
functions might not get instrumented as intended.
During the instrumentation, the original object and
its information gets lost, which could affect the exe-
cution of the software. This caused issues when in-
strumenting TensorFlow.

3.3 Pre Import Weaving

Pre Import Weaving aims to apply the decorators be-
fore execution to avoid this limitation. This was a
central issue in the TensorFlow use case. Here, the
abstract syntax tree is used to apply the decorator an-
notations to all functions. This process is performed
by the InstrumentOnImportFinder automatically.

The method utilizes the standard Python library
module ast to process the code. However, the soft-
ware to be instrumented can also use this feature for
its own purposes, which may affect whether the in-
strumentation is applied at all.

4 Performance Evaluation

Overhead is the central issue of monitoring frame-
works. Therefore, we run performance measurements
utilizing a Python re-implementation of the micro
benchmark MooBench [3].

MooBench consists of a script to execute the exper-
iment and a control application. The latter executes
a recursive function repeatedly and measures its ex-
ecution time. These measurements are repeated for
different setups to identify the effect that instrumen-
tation and logging have onto the execution time of
the test function. The whole benchmark for differ-
ent instrumentation frameworks [10] including Kieker
4 Python can be found on GitHub.1

We defined 5 different setups utilizing each of the
2 instrumentation options, including, (a) application
without instrumentation, (b) application with instru-
mentation, but without active probes, (c) with ac-
tive probes, but with a dummy writer, (d) with ac-
tive probes and the text writer, and (e) with active
probes using the TCP writer. In total, we had 9 dif-
ferent experiments, as the no instrumentation setup
only needed to run once.

For comparison, we executed the corresponding
setup for Kieker 4 Java, on the same machine with
the same configuration parameters for the same se-
tups, utilizing one instrumentation option, AspectJ.

The experiment was executed single-threaded on a
server with an Intel Xeon E5620, 2.4 GHz with 8 GB
RAM, and each experiment was repeated 10 times.
The test code is a function with the recursion depth
of 10 with zero additional method time, producing a
trace with 10 calls. We created 200 000 traces per
experiment, but only collect the latter half for mea-
surement to ensure that the just-in-time compiler in
Java has been applied, and the system is in steady
state. The same applies to the Python experiment.

An overview of the results is depicted in Table 1.
The benchmark runs 42 times slower in Python than
in Java without instrumentation, and varies more in
its execution time. This is reduced when the probe
is introduced to 8 times slower, indicating that the
instrumentation overhead is much lower than in Java.

As expected, the text loggers are the slowest. This
is due to the high volume of text that needs to be writ-
ten during logging. Binary representations are much
faster, as they are more compact. Kieker 4 Python,
does not include a binary writer, as we limited our
effort to a TCP writer and the use of the Kieker col-
lector (formerly known as Kieker-Data-Bridge).

Also, an interesting notion is that for the TCP and
null writers, the pre import weaving is faster while we
expected that both decorator approaches are similar
in their overhead.

5 Conclusions

We presented the instrumentation of two case studies
with Kieker 4 Python and evaluated the performance
of the implementation and two of the instrumentation
methods. Based on the measurements, the pre import
weaving method results in faster execution. This is
an interesting result, as we assumed that there should

1https://github.com/kieker-monitoring/moobench

https://github.com/kieker-monitoring/moobench


Table 1: Kieker 4 Python and Java performance measurements in milliseconds in comparison. Kieker 4 Python
has two result sets in addressing the two different instrumentation approaches. Kieker 4 Java used AspectJ for
instrumentation. 1.q, 2.q, 3.q stand for the first, second (median) and third quartile.

Python Java
setup mean 1.q 2.q 3.q mean 1.q 2.q 3.q
w/o 6.908 6.860 6.892 6.932 0.166 0.16 0.160 0.167
probe inactive - post 15.131 15.096 15.139 15.188 1.820 0.857 0.900 3.595
probe inactive - pre 15.137 15.042 15.079 15.121
null writer - post 534.177 583.261 585.929 587.558 17.844 14.473 17.306 20.950
null writer - pre 118.255 117.655 117.881 118.160
text writer - post 2681.863 2104.617 2292.797 3236.825 232.100 223.481 226.028 228.541
text writer - pre 2772.709 2782.738 2793.667 2808.349
tcp writer - post 1340.107 1199.775 1205.714 1661.062 12.228 9.016 12.427 14.457
tcp writer - pre 960.505 870.799 876.135 1149.236

not be a significant performance difference between
both methods, as they both utilize decorators.

We were able to apply both approaches on our case
studies to some extent. However, there are limits to
what can be instrumented and whether the weaving
has side effects. Furthermore, modules written in C,
like numpy, cannot be instrumented with Kieker 4
Python. Here it might be necessary to instrument
numpy’s C code with Kieker 4 C [9].

In the future, we will evaluate two additional meth-
ods to mitigate issues with function decorators and
import modifications. First, we will monitor changes
to the sys.meta_path to be able to react to changes
introduced by other code and reapply instrumenta-
tion. This may help to reduce the chance of having
instrumentation removed by other code, but as all fa-
cilities we use, can also be used by any other program-
mer, there can be cases where this method fails.

Second, we envision a method inspired by AspectJ
and similar tooling to apply instrumentation before
execution, i.e., create a custom Python to Python
compiler that adds instrumentation to the code or ex-
tend Python itself to be able to be used in this fashion.
However, this method requires extensive knowledge on
Python grammar and return behavior.

Finally, we aim to improve the performance of
Kieker 4 Python by adding asynchronous logging, and
define an approach to combine Kieker 4 C and Python
to be able to monitor modules implemented in other
programming languages.

Acknowledgment Funded by KMS Kiel Marine
Science - Centre for Interdisciplinary Marine Science
at Kiel University and the Deutsche Forschungsge-
meinschaft (DFG – German Research Foundation),
grant no. HA 2038/8-1 – 425916241.

References

[1] A. van Hoorn, J. Waller, and W. Hasselbring.
“Kieker: A Framework for Application Perfor-
mance Monitoring and Dynamic Software Anal-
ysis”. In: Proceedings of the 3rd ACM/SPEC

International Conference on Performance En-
gineering (ICPE 2012). Boston, Massachusetts,
USA, April 22–25, 2012: ACM, Apr. 2012,
pp. 247–248.

[2] B. Jones and D. Beazley. Python Cookbook.
O’Reilly Media, Incorporated, 2012.

[3] J. Waller. “Performance Benchmarking of Ap-
plication Monitoring Frameworks”. PhD thesis.
Faculty of Engineering, Kiel University, Dec.
2014.

[4] Mart́ın Abadi et al. TensorFlow: Large-Scale
Machine Learning on Heterogeneous Systems.
Software available from tensorflow.org. 2015.

[5] J. Waller, N. C. Ehmke, and W. Hasselbring.
“Including Performance Benchmarks into Con-
tinuous Integration to Enable DevOps”. In:
SIGSOFT Softw. Eng. Notes 40.2 (Mar. 2015),
pp. 1–4.

[6] T. Kluyver et al. “Jupyter Notebooks - a pub-
lishing format for reproducible computational
workflows”. In: Positioning and Power in Aca-
demic Publishing: Players, Agents and Agendas.
Ed. by F. Loizides and B. Scmidt. Netherlands:
IOS Press, 2016, pp. 87–90.

[7] Boris. Behind the Scenes: Building a Dynamic
Instrumentation Agent for Python. 2017.

[8] W. Hasselbring and A. van Hoorn. “Kieker: A
monitoring framework for software engineering
research”. In: Software Impacts 5 (Aug. 2020).

[9] R. Jung, S. Gundlach, and W. Hasselbring.
“Instrumenting C and Fortran Software with
Kieker”. In: Symposium on Software Perfor-
mance. Ed. by S. Becker et al. CEUR Worshop
Proceedings. Nov. 2021.

[10] D. G. Reichelt, S. Kühne, and W. Hasselbring.
“Overhead Comparison of OpenTelemetry, in-
spectIT and Kieker”. In: Symposium on Soft-
ware Performance 2021. CEUR Worshop Pro-
ceedings. Nov. 2021.


	Introduction
	Case Studies
	Instrumenting Python
	Manual Instrumentation
	Post Import Weaving
	Pre Import Weaving

	Performance Evaluation
	Conclusions

