
Architecture Recovery from Fortran Code with Kieker

Reiner Jung
Kiel University, Germany

reiner.jung@email.uni-kiel.de

Henning Schnoor
Kiel University, Germany

henning.schnoor@email.uni-kiel.de

Sven Gundlach
Kiel University, Germany

sven.gundlach@email.uni-kiel.de

Wilhelm Hasselbring
Kiel University, Germany

hasselbring@email.uni-kiel.de

Abstract

Scientific models are software systems, which are key
to understand and assess a range of challenges, such
as climate change mitigation. However, such mod-
els are usually developed over decades. To support
program comprehension for software maintenance and
restructuring, we designed an architecture recovery
process for Fortran-based scientific models utilizing
Kieker 4 C to collect call traces at runtime. Further-
more, we derive structural information from the re-
covered architecture. In this paper, we present our
analysis process and some results from analyzing three
scientific models. Additionally, we describe how to use
the information obtained by our analysis to identify
possible optimizations of the scientific models.

1 Introduction

Scientific models play a vital role in understanding
and assessing current challenges, including economic
and ecological impacts of resource extraction, and cli-
mate change mitigation. These models are mainly im-
plemented in Fortran and have been developed over
a long period of time, e.g., the UVic Earth System
Climate Model has been developed since the 1970’s.
The code typically uses pre-processing directives such
as #ifdef and #include to handle variants. In addi-
tion, different incompatible Fortran dialects are used
together in the source code. Therefore, static source
code analysis is limited and may not cover the correct
parts of a variant when recovering the architecture.
While we still use and improve static code analysis
for architecture recovery, we need a second approach
to ensure that we get a complete picture. There-
fore, we can use Kieker 4 C, which also supports other
programming languages compiled into native machine
code. In addition, scientists can also gain insights into
the model’s performance in this way.

In this paper, we explain the process to apply
Kieker [1, 2], recover the architecture and infer struc-
tural information of the recovered model, as well as
show preliminary results from scientific models.

Section 2 introduces the recovery process. Section 3
presents preliminary results on the recovered architec-

tures. Finally, Section 4 provides a short summary
and an outlook on model recovery and optimization.

2 Recovery Process

The generic recovery process consists of seven steps,
whereby especially the recovery can be repeated to im-
prove the results. In contrast to enterprise software,
scientific model use their own build system, which
often also covers configuration and feature selection.
Furthermore, the software is usually non-interactive
and produces one huge trace, e.g., in one experiment
we create 1.5 TB of compressed monitoring data.

Step 1: Understand the Model’s Build Process
Before we can perform any analysis, we need to un-
derstand the build process of a scientific model and
how to instrument it with Kieker.

Step 2: Configuration and Parameter Setup
It is of great importance to develop a model setup
that ensures that all required parts of the model are
executed, but also does not take an excessive amount
of time to execute.

Step 3: Instrument with the Monitoring
Probes There are different instrumentation ap-
proaches available with Kieker 4 C, but in our anal-
yses with scientific models, we rely on the ability of
the GNU Compiler Collection (GCC) and the Intel
Fortran compiler (ifort, version 19.0.4 and 2021.1.2)
to weave in instrumentation probes (command line
option -finstrument-functions). Both compiler
suites are capable to instrument all functions, proce-
dures and subroutines (we refer to these as operations)
in Fortran, C and other compatible languages. It is
possible to select only a subset of these operations.
Besides activating instrumentation by the compiler,
we have also included the Kieker monitoring library
in the build path. This library provides an implemen-
tation of the two probes with the following signatures:

void __cyg_profile_func_enter

(void *this_fn, void *call_site);

void __cyg_profile_func_exit

(void *this_fn, void *call_site);



The Kieker 4 C-library implements both probe
functions and produces with Kieker the minimal
set of trace events, i.e., BeforeOperationEvent,
AfterOperationEvent, and TraceMetadata.

In Java, we can obtain method and class names
at runtime. This is not possible in compiled Fortran
code. Instead, the compiler can append debug sym-
bols to the program, which are then used to resolve
name during analysis. Our analysis tools automati-
cally call this program to extract the necessary infor-
mation to resolve the names in the Kieker events.

The names in Fortran are case-insensitive, but the
symbols in object code are case-sensitive. Thus, com-
pilers convert names to lowercase and prefix them with
_. During recovery, we remove these _, otherwise it
deviates from the source code.

Details on how to introduce compiler flags and the
library into the respective models can be found in our
replication package [3].

Step 4: Model Execution When the scientific
model is set up, we execute it to collect monitoring
data. Depending on the model and setup, this can
take minutes or hours. For the actual collection of
the monitoring data, we use the Kieker collector1 to
receive all monitoring data, compress it and store it.
The collector can be started on a different machine
and produce Kieker logs, including splitting up logs
to avoid file size issues.

In case the collector is too slow to process all events,
as it instantiates new objects for every event and fa-
cilitate event modifications, we can use NetCAT as
a server which is available for various platforms. To-
gether with split, it is possible to create a setup that
allows to store huge monitoring logs. These dumps
can then only be read by the TCP reader stage of
Kieker when replaying the log.

To execute and monitor the scientific model, we
first start the collector or NetCAT and then start the
instrumented scientific model.

Step 5: Monitoring Data Analytics After the
model run, we analyze the collected monitoring data.
Depending on how the monitoring data was collected
(see above), we use the file reader or TCP reader
stage with our analysis tools (cf. [3]). The standard
Kieker trace-analysis cannot be used, as traces
can become huge and will not fit in memory. Fortu-
nately, the architecture reconstruction only relies on
operation calls and can be created from the log data
with a minimal memory footprint. Our tools utilize
the Kieker Architecture Model, but other architecture
models can be used too.

The analysis produces a basic architecture model,
based on observations and debug symbols. To im-
prove the results, it is possible to generate a map file

1The collector is the successor of the Kieker Data Bridge
https://kieker-monitoring.readthedocs.io/en/latest/

kieker-tools/Collector.html

that lists all the functions found in the monitoring
data, the file in which they are defined, and add a col-
umn to identify an additional grouping. The directory
structure of the source code is an example for such a
grouping. Our tooling provides options to generate
such mapping files automatically, which can then be
tweaked to satisfy the engineer.

Besides a dynamic analysis with Kieker, we also
perform static code analysis and merge the recovered
static architecture. All elements from these architec-
tures are tagged to indicate their origin. This allows
to identify whether an operation or component ex-
ists in the static or dynamic recovered architecture.
It is also possible to join multiple dynamic analyses
to identify shared components. This is helpful when
analyzing variants and versions.

Step 6: Recover Interfaces While newer Fortran
dialects support interfaces comparable to interfaces of
modules and units in Pascal and Modula-2, respec-
tively, older versions do not have any interface infor-
mation. Therefore, we aim to recover interfaces based
on the calls between two components. There are dif-
ferent strategies available, for example, all calls from
one component to one other component are grouped
into one interface. This will produce very large inter-
faces and is not helpful for program comprehension.
Therefore, we collect for each provided operation all
its callee and caller components. Then, operations
with an identical set of caller components are put into
one provided interface of the callee component. This
will create too many interfaces, as not every compo-
nent will use all operations provided by another com-
ponent. However, it provides a good starting place for
semi-automated refinement.

Step 7: Inspect the Recovered Architecture
There are different tools available to visualize and
measure the recovered architecture. First, the Kieker
development tools include two views that allow to
view the architecture in Eclipse utilizing KLighD2.
One view only addresses the composition of the as-
sembly model without links based on calls, the other
one includes call information. Both visualizations al-
low to inspect the recovered model interactively.

Second, the mvis command line tool allows to vi-
sualize, inspect and measure recovered architectures.
It can color the model based on the data source of a
recovery, which is helpful when mixing different recov-
ered architectures from dynamic and static recovery.
For example, to identify components and operations
present in both architectures, shared elements can be
colored differently. In addition, mvis is able to com-
pute different metrics regarding the architecture.

3 Analyzed Scientific Models

So far, we analyzed three Earth System Models.

2KLighD https://github.com/kieler/KLighD

https://kieker-monitoring.readthedocs.io/en/latest/kieker-tools/Collector.html
https://kieker-monitoring.readthedocs.io/en/latest/kieker-tools/Collector.html
https://github.com/kieler/KLighD


<<Component>>
<unknown>

<unknown>

<<Component>>
ice

<<Component>>
ice.f

icelats filuvice

ice

<<Component>>
therm.f

therm

<<Component>>
evp.f

viscevp

evp

stressprepstepu mass_prssstressevp

<<Component>>
iceadv.f

advupb

<<Component>>
mtlm

<<Component>>
mtlm_rest.f

mtlm_rest_in mtlm_rest_defmtlm_rest_out

<<Component>>
penmon.f

penmon

<<Component>>
phenol.f

phenol

<<Component>>
qsat.f

qsat

<<Component>>
setmtlm.f

setmtlm

<<Component>>
sf_stom.f

sf_stom
<<Component>>

leaf_lit.f

leaf_lit

<<Component>>
mtlmio.f

loadlandunloadland

ta_mtlm_tsi

mtlmout

ta_mtlm_tavg

<<Component>>
microbe.f

microbe

<<Component>>
glsbc.f

glsbc

<<Component>>
canopy.f

canopy

leaf

<<Component>>
swrad.f

swrad

<<Component>>
mtlm_state.f

mtlm_state

<<Component>>
mtlm.f

mtlm

<<Component>>
pft_sparm.f

pft_sparm

<<Component>>
mom

<<Component>>
checks.f

checks

<<Component>>
state.f

state

<<Component>>
odam.f

oget

getlatputlat

getrow

<<Component>>
npzd_src.f

npzd_src

<<Component>>
congrad.f

zero_vec avg_dist

congr

inv_opop5_vec absmax

sum_dist

make_inv dot2

<<Component>>
diag.f

diag

<<Component>>
loadmw.f

add_ext_mode getvar

loadmw putmw

<<Component>>
mom.f

mom

<<Component>>
tropic.f

sfc5pt filz

tropic

sfforc

<<Component>>
poisson.f

bordercon_adjust

<<Component>>
vmixc.f

vmixc

<<Component>>
clinic.f

diagc1diagc2 isbcu

clinic

asbcu

<<Component>>
hmixc.f

hmixc

<<Component>>
diago.f

ta_mom_tsi tinsit diago
<<Component>>

stab.f

stabi

<<Component>>
diagi.f

diagi

<<Component>>
timeavgs.f

avgset

avgvar

<<Component>>
adv_vel.f

adv_vel

<<Component>>
invtri.f

invtri

<<Component>>
tracer.f

tracer

ivdift tracer_ip_check_diffasbct diagt1 diagt2

<<Component>>
convect.f

convct2

<<Component>>
setmom.f

theta0

depth_u

setmom

rowi

<<Component>>
reg1st.f

reg1st

<<Component>>
mom_rest.f

mom_rest_in mom_rest_defmom_rest_out

<<Component>>
denscoef.f

potem lsqsl2 unesco

eqstate

<<Component>>
isopyc.f

isopyc isoflux

ai_east ai_north ai_bottom isopyc_advisopi elements

<<Component>>
tracer_adv_flx.f

adv_flux

<<Component>>
setvbc.f

setvbc

<<Component>>
embm

<<Component>>
mgrid.f

resid

new_ctdmactdma

new_tdma

mgrid

sumdel pgs

tdma

sumcf sumrsdptr

<<Component>>
embm.f

embm

sum_flux

<<Component>>
embm_rest.f

embm_rest_defembm_rest_outembm_rest_in

<<Component>>
embmbc.f

embmbc

<<Component>>
setembm.f

setembm

<<Component>>
rivmodel.f

rivmodel

init_discharge

rivinit

expand_basins basin_perimeter
<<Component>>

fluxes.f

co2forcfluxesprecipitate

<<Component>>
gvsbc.f

gvsbc <<Component>>
insolation.f

declzenithorbit

<<Component>>
embmio.f

ta_embm_tavgta_embm_tsiembmout

<<Component>>
solve.f

solve

coef

<<Component>>
netcdf

<<Component>>
uvic_netcdf.f

opennext putatttextedge_maker redef

checkerror

getdimlenopennew openfile

openaddinqvardef

closeallgetvara putvara

openchk

enddefgetatttext defvar defdimgetvarsputvars

<<Component>>
common

<<Component>>
def_files.f

def_rest

def_rest_momdef_rest_mtlm def_rest_embm

inqdefined

<<Component>>
file_names.f

put_namesnew_file_name

file_names

<<Component>>
gosbc.f

gosbc

<<Component>>
findex.f

findex

<<Component>>
filuv.f

filuv

<<Component>>
gasbc.f

gasbc

<<Component>>
solardata.f

solardata

<<Component>>
isleperim.f

qpush qempty ie

showmap

qinit

isleperim

jnmmm qpop

enter_kmt_changes expand

js iw

<<Component>>
co2calc.f

drtsafe

ta_iter_sws

co2calc_sws

<<Component>>
tmngr.f

copyfulltime

ifloor ymd2dc

realsecs

id

ckdate

d2ymd hms2msms2hms

realdays

ymd2d

timeequal

rdstmp

badindex

timelesssubtime inittimeaddtime

tmngri

expandtime2 calendari gettimegetfulltime setfulltimemsec

inctime

mkstmp

settime2

settime3

expandtime

increment_time multime

d2ymdc

<<Component>>
uvic_escm.f

sbc_inittracer_init

main_

read_namelist chkcpl

set

<<Component>>
setcom.f

setcom

setvr

<<Component>>
timeinterp.f

checkinterp

timeinterpi

timeinterp

<<Component>>
data.f

data

get_tdsbc

<<Component>>
size_check.f

size_check

<<Component>>
switch.f

initswitch

getswitch

set_time_switches

avg_alarm

set_eorun alarm

<<Component>>
filt.f

filt

<<Component>>
setdata.f

setdata

get_sbc

<<Component>>
icedata.f

icedata

<<Component>>
iomngr.f

link_unitgetunitnumber

ioinit

close_filescan_option

relunit

tolower

getunitrelease_all

<<Component>>
grids.f

gcoord

grids

<<Component>>
filtr.f

filtr

<<Component>>
topog.f

min_depthkmtbc area_volume checksumi

topog

<<Component>>
co2data.f

co2ccndata

<<Component>>
util.f

checksumareatot indp areaavg setbcx

print_checksum

iplot

Figure 1: UVic model (v2.9.2) architecture with two levels of components

UVic is a fairly old model, with some of its ocean
model introduced in the early 1970’s.3 Its code has
been adapted to new computer architectures multiple
times through its lifetime. Other parts of UVic are
based on work from the late 1990’s and 1970’s, but
were integrated into the UVic ESM in 2001. Its code
base is mainly Fortran 77 and Fortan 90 code and uses
one central configuration and build settings file.

As an example result, we briefly report on the ar-
chitecture recovery of UVic. Figure 1 depicts the
model with two levels of components reflecting the file
and directory structure of the code, and therefore, the
structure the developers use. Due to the page limit,
we cannot give a full overview in the present paper.
We refer to the replication package for details [3].

MITgcm is a newer model developed at MIT since
1998.4 It has extensive documentation, a simple fea-
ture management in its build system, and a coarse
grained conceptual architecture. It is mostly imple-
mented in Fortran 77 and Fortran 90, apart from some
external C packages. Its configuration is scattered
across many different files and its build system is also
specifically designed for this model.

Shallow-Water Model is a newer model. Its de-
velopment started in 2010 at GEOMAR and the
model is completely implemented with Fortran 90.5

It uses Fortran modules and interfaces, which we map
to components in the recovered architecture.

4 Conclusions

Dynamic recovery provides information on the used
part of software across languages and includes timing
information. Depending on the libraries, we can trace
into library functions and get a wider picture than a

3UVic http://terra.seos.uvic.ca/model/
4MITgcm https://github.com/MITgcm/MITgcm
5SWM https://git.geomar.de/swm/swm

static code analysis can provide. However, static in-
formation provided by debug symbols supports the re-
covery process, as well as, path and map based group-
ing strategies which rely on static information.

File and directory based grouping of operations is
a starting point for the recovery. On inspection, it
might be the case that directories include too many
files and too few operations for a useful architecture.
Thus, the strategy can be modified based on user in-
put informed by architecture visualizations.

In future, we will use the data collected as described
in this paper to optimize the mentioned scientific mod-
els with respect to standard coupling and cohesion
metrics. Preliminary results indicate that UVic gains
significantly more from such optimization than MIT-
gcm. This confirms our expectations, since MITgcm’s
software architecture is more modern than UVic’s. In
addition, we plan interviews with ESM developers to
discuss our methods and findings.

Acknowledgment Funded by KMS Kiel Marine
Science - Centre for Interdisciplinary Marine Science
at Kiel University and the Deutsche Forschungsge-
meinschaft (DFG – German Research Foundation),
grant no. HA 2038/8-1 – 425916241.

References

[1] A. van Hoorn, J. Waller, and W. Hasselbring.
“Kieker: A Framework for Application Perfor-
mance Monitoring and Dynamic Software Anal-
ysis”. In: Proceedings ICPE 2012. Apr. 2012,
pp. 247–248. doi: 10.1145/2188286.2188326.

[2] W. Hasselbring and A. van Hoorn. “Kieker: A
monitoring framework for software engineering
research”. In: Software Impacts 5 (Aug. 2020).
doi: 10.1016/j.simpa.2020.100019.

[3] R. Jung et al. Replication package. Aug. 2022.
doi: 10.5281/zenodo.7020117.

http://terra.seos.uvic.ca/model/
https://github.com/MITgcm/MITgcm
https://git.geomar.de/swm/swm
https://doi.org/10.1145/2188286.2188326
https://doi.org/10.1016/j.simpa.2020.100019
https://doi.org/10.5281/zenodo.7020117

	Introduction
	Recovery Process
	Analyzed Scientific Models
	Conclusions

