
Towards a Model-Based Software Reengineering Approach

with Explicit Behavior Descriptions: Chances and Challenges

Marco Konersmann, Bernhard Rumpe
Software Engineering

RWTH Aachen University, Germany
http://www.se-rwth.de/

Introduction Model-based software reengineering
(SRE) uses a horse-shoe process style to modernize
original systems [4]. A model of the original system
is constructed, adapted, and the target system code
is partly or as a whole generated. These translations
can introduce faults and quality issues. When the
model is incorrect with respect to the original system,
the target system might have missing functionality or
bad quality. We can compare the target system to the
original system, but this does not show error sources
or how to fix them: is the issue in the model extrac-
tion, the model adaptation, or the code generation?

A major kind of models used in model-based SRE
are software architecture (SA) models. SA is often ex-
pressed as informal boxes and lines, alongside textual
documentation for communication. While this pro-
vides a large flexibility for the modelers to communi-
cate, these models cannot be processed automatically
for analysis or construction of the system. The Uni-
fied Modeling Language (UML) is broadly used for
SA and design. It provides a rich syntax for model-
ing architectures and some degree of formality for au-
tomated processing. However, the mapping of UML
elements to an implementation or a runtime behavior
is not clearly specified. E.g., there are many potential
implementations of UML components or their inter-
connection, depending on the technical domain and
intended level of abstraction.

Several approaches exist for creating suitable ar-
chitecture models of a system, e.g., using static or
dynamic analysis [2]. However, since there is no uni-
versally accepted SA language [6], reuse is limited to
related projects. Using a modular SA language with
an explicit behavior description, that is suitable for
the diverse concerns of SA, can help increasing reuse.
In this paper we sketch a reengineering process uti-
lizing a model-based approach with explicit behavior
descriptions, and discuss the chances and challenges.

Horse-Shoe Model using Software Architecture
Models with Behavior Descriptions Figure 1
shows a model-based SRE process model that allows
for simulation due to SA models with explicit behavior
descriptions. The original system comprises the code,
run time data such as logs and performance annota-

Original

Architecture Model

Target

Architecture Model

Run Time

Data

Code

Further Artifacts

Original System

Simulation

Results

Simulation

Results

adaptation

simulation

comparison

simulation

Target System

extraction generation

refactoring

trace

links

Code

Further Artifacts

comparison

trace links trace links

updating

quality property tuning

Figure 1: Horse shoe model for software reengineering
with model-based software architecture

tions, and further artifacts, such as design decision
documents and their rationale. First, we create an
architectural model of the original system alongside
trace links from the code to the model elements. The
approach requires an architecture modeling language
that defines behavior of components and their inter-
connection, and the data processing within the com-
ponents, in a processable way. The architecture model
is used to simulate the system and the quality prop-
erties are tuned until the simulation results resemble
the original run time data sufficiently. It can then be
adapted to resemble the intended target architecture,
and simulated to evaluate the run time quality com-
pared to the architecture model of the original system.
Then, code is generated from the target architecture
model. The process maintains trace links in each step.
Therefore the relation of original system artifacts to
the target system can be traced. The SRE process
might introduce the need to update or refactor these
artifacts, e.g., when non-architectural code needs to
be adapted or design decisions need to be revised.

Chances We see the following chances in applying
the approach: First, using a model-based approach
allows to automate the SRE process: This includes
to automate the creation of architecture models from
code, model transformations, and code generation.
We require languages that provide a clear interpreta-
tion of their behavior description, that holds beyond
individual projects or even organizations. They there-
fore allow to define reusable transformations, e.g., to



replace function calls with event-based communica-
tion or to split or merge components. These reusable
transformations can be provided alongside the archi-
tecture language and reused in multiple SRE projects.

Second, an explicit behavior description enables the
simulation of the modeled architecture, for comparing
it against the original system. This can increase the
quality of the target architecture model simulation.

Third, an architecture modeling language with ex-
plicit behavior descriptions allows to analyze the data
and control flow through the modeled system. This
can help understanding the original system and how
to improve the architecture for a target system.

Finally, as the process builds trace links between
the code and the architecture model, trace links of
existing other artifacts to the original code can be
translated into trace links between these artifacts and
the target code. These can be used to reference arti-
facts that need to be updated in the SRE process.

Challenges There are some challenges regarding
the approach, that we need to address: First, ar-
chitectures today have to cope with a large diver-
sity, e.g., in styles, platforms, or implementation lan-
guages, which is one of the reasons why no SA lan-
guage exists, that is suitable for all projects [6]. The
diversity also imposes a large complexity on the au-
tomated model extraction. Hence, an implementa-
tion of this approach needs to carefully choose the ar-
chitecture language. An implementation should take
into account that architectural concepts and technolo-
gies evolve. We plan to define fine-grained require-
ments for architectural languages, model-extraction
and code-generation mechanisms to enable efficient
reuse or adaption of existing languages and tools.

Second, the simulation of architectures requires a
suitable level of abstraction. Finding the right level of
abstraction depends on the purpose of the modeling,
and thus on the purpose of the reengineering project.
E.g., if the purpose is only to wrap the original system
in new interfaces, then the level of abstraction might
be higher, than if an original system should be reim-
plemented in a different paradigm. This requires the
architecture language, the model extraction mecha-
nism, and the code generator to handle different levels
of abstraction, e.g., projects in a repository, classes, or
deployments, within the same reengineering project.

Third, creating an architecture model with the
quality properties of the original system requires ex-
plicit behavior descriptions and information about the
modeled system. Among others, this depends on the
quality properties to validate, the platform, and the
code. One possibility to tune the quality parameters
of the model is the use of reinforcement learning.

Fourth, creating traceability is a challenge in all but
trivial projects. In practice, trace links require con-
siderable effort to maintain [1]. Automated model ex-
traction and code generation can automatically create
trace links. Automation can use naming conventions

or other external knowledge to improve the degree of
automation for further artifacts.

Finally, refactoring existing, non-architectural code
and updating other artifacts automatically is a chal-
lenge. As code is formal, elements can be referenced
and translated using automated processing. Other
artifacts—e.g., design decisions documents—are less
formal. Hence there is a greater challenge for auto-
mated updates. The presented approach can point to
documents or parts therein to reconsider by following
the trace links, to decrease the manual effort.

To evaluate the functional suitability, we plan to
apply a demonstrator to information system use cases.
While we consider the approach domain-agnostic, the
extraction mechanisms and code generator need to
cover domain-specific frameworks and coding styles.
We propose to use MontiArc [3] as a SA language
for this approach, because it has explicit behavior de-
scriptions, allows to model different levels of abstrac-
tions, an can easily be extended with domain-specific
refinements. We can then provide libraries and exten-
sions to represent common technologies and concepts.
Codeling [5] is a tool for architecture model extraction
and code generation, which considers diversity in the
technologies and concepts of architectures. Codeling
automatically creates trace links when extracting ar-
chitecture models. Further trace links are considered
an input to this approach, meaning that better trace
links can lead to better results. We plan to adapt
Codeling to handle MontiArc models and to handle
diversity within single projects.

Conclusion We presented an approach for software
reengineering using architecture models with explicit
behavior descriptions, and discussed its chances and
challenges. Future work can include specifying a ref-
erence architecture for the approach and providing an
implementation to showcase the functional suitability.

References
[1] Jane Cleland-Huang, Brian Berenbach, Stephen Clark, Raf-

faella Settimi, and Eli Romanova. Best practices for auto-
mated traceability. Computer, 40(6):27–35, June 2007.

[2] Stephane Ducasse and Damien Pollet. Software architecture
reconstruction: A process-oriented taxonomy. IEEE Trans-
actions on Software Engineering, 35(4):573–591, 2009.

[3] Arne Haber. MontiArc - Architectural Modeling and
Simulation of Interactive Distributed Systems. Aach-
ener Informatik-Berichte, Software Engineering, Band 24.
Shaker Verlag, September 2016.

[4] R. Kazman, S.G. Woods, and S.J. Carriere. Requirements
for integrating software architecture and reengineering mod-
els: Corum ii. In Proceedings Fifth Working Conference on
Reverse Engineering (Cat. No.98TB100261), 1998.

[5] Marco Konersmann. Explicitly Integrated Architecture -
An Approach for Integrating Software Architecture Model
Information with Program Code. phdthesis, University of
Duisburg-Essen, March 2018.

[6] Nenad Medvidovic and Richard N. Taylor. A classification
and comparison framework for software architecture de-
scription languages. IEEE Trans. Software Eng., 26(1):70–
93, 2000.


