
Towards understanding the impact of requirement evolution on

deployment

Florian Schmalriede and Andreas Winter
Carl von Ossietzky Universität, Oldenburg, Germany

{schmalriede,winter}@se.uol.de

Abstract

Distributed and heterogeneous systems, such as IoT
systems, enable many different alternative software de-
ployments which lead to different system character-
istics. Evolving functional or non-functional require-
ments might lead to adapting the deployment. This
paper shows a case study where changed requirements
result in a new deployment, motivating early deploy-
ment planning in software evolution.

1 IoT Systems Software Deployments

Internet of Things (IoT) systems integrate real-
world things into digital networks, allowing computer
systems and users to interact with them without direct
physical contact. Computer systems and users analyze
properties of things and influence them according to
use-case-specific business logic. Processes become fully
or partially automated.

IoT systems are realized as distributed and heteroge-
neous systems in which subsystems with different pro-
files cooperate across different network technologies to
fulfill application-specific goals. Sensor and actuator
nodes, directly attached to things or in their environ-
ment, digitize and influence properties of things via
physical interactions. Servers process gained informa-
tion and respond accordingly to outcomes automati-
cally. Clients present gained information to users and
react to input from users accordingly. Gateways inter-
mediate between environment-dependent and device-
specific network technologies and link individual net-
works of sensor and actuator nodes, servers, and clients
into collaborative networks.

Different subsystems in IoT systems vary e.g. in
terms of their computing power, storage capacity,
power consumption and communication bandwidth
due to their environment or profile. Neverless, often
all subsystems are suitable to deploy software that pro-
vides requested functionality. Accordingly, there is a
wide range of alternative deployments in IoT systems.

Depending on software deployment, subsystems of
IoT systems have different workloads. This implies
that different software deployments affect the charac-
teristics of IoT systems in different ways. For example
deployments which will lead to more workload on mo-
bile subsystems is likely to reduce their runtime. Ac-
cordingly, deployment of software has impact on the
fulfillment of requirements that specify which charac-
teristics need to be met. Vice versa, requirements re-

strict the range of possible deployments. Changing re-
quirements over time may lead to changing software de-
ployments. If this hypothesis is confirmed, it becomes
relevant to consider impacts of requirements evolution
on software deployment to address them in a deploy-
ment planning phase.

To determine, if evolving requirements will impact
the deployment of software, three case-study experi-
ments are performed. The first experiment shows that
initial requirements can be fulfilled with an initial de-
ployment. In the second experiment requirements from
first experiment evolve and it is shown that the initial
deployment from first experiment do not met the new
requirements. The third experiment show that evolved
requirements can be met with a different deployment.

2 Case Study

Monitoring cold chains (cf. [1, p. 28ff.]) for food
during transport is selected as an application scenario
for IoT systems. Foods are placed in transport boxes,
each equipped with a temperature sensor node, and
loaded into cold trucks. For independence, temper-
ature sensor nodes are supplied with mobile power
sources. There are fixed gateways in cold trucks, pow-
ered by cold trucks battery, to which temperature sen-
sor nodes share food temperature. Gateways establish
an internet connection and forward measured temper-
ature values. Additionaly, gateways can interact with
drivers in order to notify them in cooling issues. Thus,
gateways serve as gateways and clients at the same
time. A server receives information about cold chain
via internet and stores them for later access. With
clients, contractors and customers access information
on the cold chain on the server.

Since performing experiments with real cold trucks
is very complex, a model1 was used in [3] to per-
form the experiments. Each of two temperature sensor
nodes are realized by an ESP32 devkit-C32D devel-
oper board and a BlueDot TMP117 temperature sen-
sor. Rechargeable batteries with a storage capacity of
65 W

h are used as power source for the temperature sen-
sor nodes. A Raspberry PI 4B with an attached 4 inch
display is used as gateway. Temperature sensor nodes
connected via WiFi, to a gateway providing a local
hotspot. Only gateway and temperature sensor nodes
are considered in the experiments, so server and clients
are simulated together on a conventional laptop.

1The authors thank Phillip Bühring for building the model
and performing experiments in his master’s thesis [3].

{schmalriede,winter}@se.uol.de


Each experiment was performed over a period of one
hour. Every second, a temperature reading was col-
lected from both temperature sensors. Functional re-
quirements were validated with acceptance tests, where
collected temperature values were replaced with simu-
lated temperature values to be comparable across ex-
periments. Non-functional requirements related to the
runtime of temperature sensor nodes were calculated
using the capacity of mobile energy sources and the en-
ergy consumption of temperature sensors nodes (see ta-
ble 1). Energy consumption was measured by INA226
power sensors which average 256 readings and have an
A/D conversion time of 142µs.

2.1 Experiment 1

Rudimentary cold chain monitoring requires func-
tionality to detect and share cold chain interruptions.
It is required that cold chain monitoring functionality is
continuously available at least one working week, here
Monday 6:00 am to Saturday 6:00 pm. Thus recharge-
able batteries of temperature sensor nodes must last
132 hours. Between Saturdays 6:00 pm and Mondays
6:00 am, batteries can be recharged.

A cold chain monitoring software, that compare
measured temperature of food continously against hard
thresholds, detect cold chain interruptions on sensor
nodes. If cold chain interruptions appear, the soft-
ware shares information about them with other subsys-
tems. Software on gateways inform drivers about cold
chain interruptions and forwards information about in-
terrupts to the server. The server stores information
about interruptions and gives customers and contruc-
tors the possibility to consult them via clients. This
system detects cold chain interruptions and prevents
spoiled goods from entering the market.

The deployment in Experiment 1 meets the func-
tional and non-functional requirements. Acceptance
tests were successfully passed and batteries run time
of 141 hours exceeds the required 132 hours.

2.2 Experiment 2

The cold chain monitoring can be improved by pre-
dicting possible cold chain interruptions. If a cold chain
interruption is to be expected drivers are informed such
they can react. Runtime and charging time of recharge-
able batteries remain unchanged to Experiment 1.

In order to meet emerging functional requirements,
the cold chain monitoring software deployed on the
temperature sensor nodes is extended by complex cal-
culations to predict cold chain interruptions. Software
on gateways are extended to inform drivers about up-
coming interruptions. Beside detecting and reporting
cold chain interruptions, the upgraded system detects
and informs about upcoming cold chain interruptions.

The deployment in Experiment 2 meets the func-
tional but not the non-functional requirements. Ac-
ceptance tests were successfully passed, but batteries
runtime of 105 hours is below the required 132 hours.

2.3 Experiment 3

Reworking the deployment in experiment 3 improves
these disadvantages. The cold chain monitoring soft-

ware is now deployed on gateways. Thus temperature
sensor nodes do not have to perform complex calcula-
tions and save energy for measuring and sending tem-
perature values, only.

The deployment in Experiment 3 meets the func-
tional and non-functional requirements. Acceptance
tests were successfully passed and batteries run time
of 149 hours exceeds the required 132 hours.

Experiment Power consumption

Experiment 1 ≈ 460 mW
h

Experiment 2 ≈ 618 mW
h

Experiment 3 ≈ 437 mW
h

Table 1: Average power consumption of temperature sensor
nodes, taken from [3].

3 Conclusion

By having an initial deployment that fulfill initial re-
quirements and evolving the initial requirements that
will not be fulfilled by initial deployment it is shown,
that requirement evolution can have impact on de-
ployment. Using an improved deployment which met
the evolved requirements, shows that changed require-
ments call for revised deployments.

In order to avoid subsequent adjustments of deploy-
ments, including hardware adaptations, requirement
evolution has to be considered already in the initial
engineering process. Accordingly, deployment does not
change during evolution of considered requirements.

More generally, the results show that requirements
affect the deployment of software in IoT systems.
Whereby different deployments may meet the same
functional requirements, but may not meet same non-
functional requirements. This motivates a more de-
tailed research on the impact of requirements on de-
ployments as well as deployment planning in order to
develop requirements-aware IoT systems.

Beyond the results of the experiments, a realistic
model for IoT systems was built in [3], which will be
used for further research on the impact of requirements
on IoT systems deployment. This allows to close gaps
in research identified by [2] and will be used as a basis
to find a structured way to plan the deployment of
functionalities in IoT systems.

References

[1] A. Bassi et al. Enabling Things to Talk. Springer
Berlin Heidelberg, 2013.

[2] A. Brogi et al. How to place your apps in the
fog: State of the art and open challenges. Software:
Practices and Experience, May 2020.

[3] P. Bühring. Case studies in IoT-Deployment. Mas-
ter's thesis. Carl von Ossietzky Universität Olden-
burg, February 2023.


	IoT Systems Software Deployments
	Case Study
	Experiment 1
	Experiment 2
	Experiment 3

	Conclusion

