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Abstract Reverse engineering software models from
program source code has been extensively studied for
decades. Still, most model-driven reverse engineering
approaches cover only single programming languages
and cannot be transferred to others easily. Large pre-
trained AI transformer models which were trained on
several programming languages promise to translate
source code from one language into another (e.g., Java
to Python). Thus, we fine-tuned such a pre-trained
model (CodeT5) to extract sequence diagrams from
Java code and examined whether it can perform the
same task for Python without additional training.

Motivation and Background. Reverse engineer-
ing aims at transforming source code to abstrac-
tions in the form of models, such as UML-like dia-
grams, which shall facilitate program comprehension
and analysis, serving as starting point for optimizing
and modernizing legacy software.

Existing model-driven reverse engineering tools are
often trimmed to a single programming language, and
they typically produce a structured, yet highly generic
representation of the source code [3]. For instance, the
well-known MoDisco tool [1] transforms Java source
code (compatible to Java 1.6) into an instance of
its own Java metamodel or the OMG’s KDM meta-
model1. While the Java metamodel abstracts from
some details of the Java AST, it still represents the
source file contents in a very fine-grained way, lacking
the key feature of a model to focus on a dedicated as-
pect for a well-defined purpose. Both transferring the
parser infrastructure to other source languages and
extracting higher-level abstractions or domain-specific
models require almost prohibitive manual effort.

These downsides call for more flexible reverse en-
gineering tools which can be easily adapted to de-
rive abstractions residing at different levels, and for a
language-agnostic approach which can generalize re-
verse engineering tasks from a specific programming
language to support distinct languages.

In sight of large pre-trained AI transformer mod-
els, such as GPT-3 and T5, smaller versions of these
general-purpose natural language transformer mod-
els have been trained to learn different programming
languages. These pre-trained programming language

1https://www.omg.org/spec/KDM/1.4/About-KDM/

models (denoted as AI models in the sequel) are not
restricted to perform analysis tasks in one program-
ming language but promise to handle different ones.
For instance, CodeT5 [4] cannot only summarize the
behavior of a program’s methods in natural language
but also translate it into other programming lan-
guages. However, reverse engineering capabilities of
AI models have not been explored yet [2]. In our pre-
liminary study, we examined to what extent an AI
model can perform the reverse engineering task of ex-
tracting sequence diagrams from methods written in
different programming languages.

Reverse Engineering Task. As reverse engineer-
ing task, we desired to extract collaborations at the
method-level of object-oriented software. For in-
stance, Figure 1a depicts an excerpt of a Java method
comprising three different method invocations, two of
them being wrapped by conditional statements. Fig-
ure 1b depicts the corresponding sequence diagram
that captures the deduced object collaborations.

The reason for eventually choosing this reverse en-
gineering task is twofold. First, on top of Java parsing
technology, such as MoDisco, the task can be scripted
in a straightforward way, allowing us to easily gener-
ate sets of training and validation data. Second, since
the input to the AI model is limited to a rather small
set of tokens, we expect to not exceeded these lim-
its by the size of the examined methods. In fact, we
easily reached these limits in an earlier experiment in
which we tried to use an AI model to transform an
entire Java code base into an instance of MoDisco’s
Java metamodel.

Experimental Setup and Results. In our exper-
iments2, we employed CodeT5 (small3), an AI model
which outperformed the previous state-of-the-art AI
model, PLBART. CodeT5 is trained on seven pro-
gramming languages (including Java and Python) to
perform, for instance, code-to-code translation.

Java To Sequence Diagram For training the AI
model on that task, we retrieved more than 350k
methods from CodeSearchNet and ran the MoDisco
discoverer on them. A script converts the result-

2https://doi.org/10.5281/zenodo.7628609
3https://huggingface.co/Salesforce/codet5-small
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void foo(int a) {

// ...

if (a <= 0) {

x.computeNeg();

}

else {

x.computePos();

}

x.cont();

}

(a) Java method

this

computePos

x:X

computeNeg
if

[a<=0]

[else]

cont

(b) Sequence diagram

Figure 1: Original Java source code and correctly re-
verse engineered sequence diagram.

ing XMI-files into JSON-files4 comprising a custom
description of a sequence diagram for each Java
MethodDeclaration. For fine-tuning the AI model,
we split the resulting data set into training, valida-
tion, and test sets, consisting of about 366k, 13k, and
21k examples, respectively, and fed them as tokens
into the net. The fine-tuned model determined more
than 98% of the sequence diagrams correctly.

Python To Sequence Diagram As our goal is to
transfer the trained knowledge to other programming
languages, we examined whether the fine-tuned model
can extract correct sequence diagrams for Python,
too. Due to the lack of a ground truth, we manu-
ally inspected a sample of selected Python methods.
For example, Figure 2a depicts the method shown in
Figure 1a defined in Python, and Figure 2b shows
the sequence diagram obtained from our fine-tuned
model. The figures demonstrate that the sequence
diagram is determined incorrectly: The model asso-
ciates the method invocation cont() with the else-
branch. Fine-tuning might have caused the model to
learn recognizing brackets as delimiters and contra-
dicts our expectations on transfer learning.

Critical Discussion. We briefly summarize the
major lessons learned from our experiments as follows:

Technical Limitation The limitations on the num-
ber of input tokens hinders exploring the contents of
an entire class. As a consequence, the accuracy of
the sequence diagram is limited as it may be unclear
on which concrete objects the methods are invoked.
However, given the knowledge of the input project and
with additional fine-tuning of the task, we are confi-
dent that at least a post-processing mechanism can
extract information about interacting objects and the
corresponding classes.

Limited Transfer Learning The model trans-
forms the Java methods into expected sequence dia-
grams almost perfectly (more than 98% accuracy and

4Another script can transform the JSON-file into a vector
graphic for visualization purposes.

def foo(a):

// ...

if (a <= 0):

x.computeNeg();

else:

x.computePos();

x.cont();

}

(a) Python method

this

computePos

x:X

computeNeg
if

[a<=0]

[else]

cont

(b) Sequence diagram

Figure 2: Original Python source code and incorrectly
reverse engineered sequence diagram.

99% CodeBLEU). Thus, fine-tuning the model ac-
cording to the developers’ recommendations worked
as expected, and the aforementioned technical limita-
tions are no serious issues.

Our initial results indicate that fine-tuning to con-
vert Java methods may cause the AI model to forget
knowledge about relationships among different pre-
learned programming languages. If transfer learning
between multiple programming languages is hindered
by fine-tuning, it remains questionable whether the
effort of training the language model pays off.

Conclusion and Outlook. All in all, we demon-
strated how to reverse engineer sequence diagrams
from Java methods using a pre-trained programming
language model. While, after fine-tuning, the learned
task was accomplished almost perfectly, our initial
motivation of transferring the learning to another
programming language did not meet our expecta-
tions. However, we did not experiment with different
sizes for fine-tuning or with learning multi-tasks, yet.
Therefore, future work may explore these two direc-
tions as well as the break-even point when the usage
of an AI model exceeds conventional manual coding.
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