
Collaborative software visualization with SEE

William Behnke
Dept. of Mathematics and Computer Science

University of Bremen
wbehnke@uni-bremen.de

Hannes Lennart Kuß
Dept. of Mathematics and Computer Science

University of Bremen
hkuss@uni-bremen.de

Abstract—SEE is a software engineering tool for visual-
izing software metrics based on the code-cities metaphor.
It assists distributed teams in analyzing software collab-
oratively by offering multi-user functionality (including a
voice chat), that allows team members to communicate
naturally while investigating software. The tool utilizes
graphs supplied in the Graph eXchange Language (GXL)
format to represent software data, and allows users—among
other things—to compare the current architecture with the
original plan and to track changes of a software over time.
One of our long-term goals is to enhance communication and
collaboration among team members, to bridge spatial gaps,
and to facilitate the understanding of software in (spatially
separated) teams.

I. Introduction
On a typical day, software developers spend around 82

minutes in meetings [1]. One of our goals in SEE is

to reduce that time to the needed minimum. In software

development, it is relevant to visualize different aspects of

code in order to get a better understanding [2]. According

to Cherubini et. al.: “developers produced visualizations:

to understand, to design and to communicate.” [2] How-

ever, the visualization of code is not easy and developers

often miss this feature [2]. SEE (for Software Engineering

Experience) is a tool developed by our research group

to visualize software data in 3D using the code-city

metaphor. [3].

Our tool focuses on co-operative understanding, en-

abling multiple people to understand and to communicate

about software together. Our tool builds up on established

3D visualization platforms, specifically utilizing the Unity

Engine. We empower developers to incorporate interac-

tive capabilities, enabling multiple individuals to partake

in virtual meetings, and facilitate information exchange

within the context of software visualization.

SEE provides developers with enhanced abilities to

comprehend the quality of their software, get a compre-

hensive overview, navigate complex architectural struc-

tures, and monitor the runtime behavior of their software.

One of our goals is to support software development

teams through the provision of an intuitive and infor-

mative environment. The development of SEE is being

carried out at the University of Bremen in collaboration

with Axivion 1, a company specialized in static code

analysis and software architecture verification.

1https://www.axivion.com/

The focus of this paper is to introduce our project and,

in particular, to emphasize the significance of incorpo-

rating emotional states within our software. Emotional

state means the mood of the participating individual by

analyzing their expressions and gestures.

In addition, we aim to present the future plans for our

tool and provide further insight into the topic for other

developers.

II. SEE Capabilities
The SEE platform is equipped with multiplayer func-

tionality, which allows multiple users—represented as

humanoid avatars—to concurrently interact with both the

viewed software and each other. This includes actions

such as moving the avatar or altering the location or

size of components drawn within the code city, as well

as the use of a voice chat to facilitate communication

between users. This collaborative environment enables

users to work together and discuss the software system

being analyzed.

SEE represents a software system’s architecture hier-

archically (persisted as GXL graph), with each node in

the graph representing a module of source code. Binary

relations among components, such as function calls, are

depicted as hierarchically bundled edges.

The incorporation of software metrics into the graph

is achieved through the use of additional visual attributes

of the shapes—such as depth, height, width or color—

and additional decorations, e.g., antennas above blocks.

The layout of the Code city is customizable and can be

automated by different types of hierarchical graph lay-

outs (e.g., treemaps, EvoStreets, rectangular and circular

packing). An example of a Code city can be seen in

Figure 1. The SEE platform enables—among others—the

visualization of the current state of a software architec-

ture through the representation of components as nodes

and dependencies as edges connecting them. This rep-

resentation can be compared to the original architecture

plan, allowing users to identify discrepancies between

the intended specification and the implemented architec-

ture. This comparison facilitates a clear understanding of

deviations from the original design and allows for the

identification of potential issues or areas for improvement.

In addition to this, SEE offers an “evolution view”

feature which allows users to view the historical evolution

of a project, providing a comprehensive overview of

the changes that occurred over time and identifying the



Fig. 1. Screenshot of an example Code City.

components that have undergone the most significant

alterations. SEE also includes a built-in code viewer with

the capability to synchronize the current line of code

being viewed among all participants in a virtual meeting,

enabling all attendees to easily reference the code being

discussed.

III. Enhancing Nonverbal Communication
The SEE platform originated as a student project, initially

utilizing the Unreal Engine as a base. After further

development, we transitioned to the Unity Engine, as it

offers greater versatility in terms of deployment across

various platforms, and the ability to utilize a wider range

of tools and community-driven products.

One of the most promising focus of development for

the SEE platform is the improvement of non-verbal com-

munication through capturing and displaying user emo-

tions and gestures. To achieve this, we are experimenting

with the use of the HTC Facial Tracker 2 and OpenCV 3

to monitor and mirror facial states. The incorporation of

facial tracking technology into code review processes has

several potential benefits. One of the key advantages is

the ability to analyze nonverbal cues such as expressions

and gestures, which can provide additional information

about the emotional state of the individuals involved in

the process.

In psychology it is well known, that nonverbal commu-

nication is as important as verbal communication. Hence,

the incorporation of nonverbal communication in SEE can

lead to more efficient and effective communication and

collaboration among team members, as they are able to

more easily interpret the reactions of their colleagues.

Additionally, this may also aid in identifying areas of

confusion or difficulty, allowing for more focused and

productive discussions.

Furthermore, this feature can be especially beneficial

for managers or supervisors who may not be profoundly

involved in the technical aspects of the software devel-

opment process. It allows them to more easily identify

and address issues related to team dynamics and com-

munication, improving the overall performance of the

2see https://www.vive.com/de/accessory/facial-tracker/
3see https://opencv.org/opencv-face-recognition/

development team. By offering a clearer insight into the

emotional state of the team, managers and supervisors can

effectively address and resolve any conflicts or challenges

that may arise during the development process, ultimately

improving time management. In most project contexts,

emotional states refer to the emotional well-being of

software developers.

Overall, incorporating facial tracking technology into

code review processes has potential to improve time

management and increase the efficiency and effectiveness

of software development teams. This can lead to more

productive and successful software development projects,

ultimately resulting in better software and more satisfied

customers.

IV. Upcoming Features
In this paper, we discussed some key aspects for the

continued development of SEE. Additionally, we also

identified other areas of interest for further exploration,

such as:

• Improving edge visualization using different types
of animations: Improving the visualization of edges

between different components of the software, by

improving animations to more clearly represent re-

lationships and dependencies.

• Runtime configuration: Providing more flexibility

and control for users by allowing them to configure

the visualization at runtime, tailoring it to their

specific needs and preferences.

• Live documentation: Incorporating live documenta-

tion within SEE, to provide a more complete and

integrated understanding of the software.

V. Conclusion
This paper presents SEE, a software visualization tool

that facilitates software comprehension by means of Code

Cities. We discussed the technology used in the devel-

opment of SEE to demonstrate our plans for future im-

plementations, and enhancing nonverbal communication

by capturing and displaying user emotions and gestures.

More information about SEE can be found on our web-

site: https://see.uni-bremen.de/.

References
[1] A. N. Meyer, E. T. Barr, C. Bird, and T. Zimmermann, “Today was a

good day: The daily life of software developers,” IEEE Transactions
on Software Engineering, vol. 47, no. 5, pp. 863–880, 2021.

[2] M. Cherubini, G. Venolia, R. DeLine, and A. J. Ko, “Let’s
go to the whiteboard: How and why software developers use
drawings,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ser. CHI ’07. New York, NY,
USA: Association for Computing Machinery, 2007, p. 557–566.
[Online]. Available: https://doi.org/10.1145/1240624.1240714

[3] R. Wettel and M. Lanza, “Codecity: 3d visualization of large-scale
software,” in Companion of the 30th International Conference on
Software Engineering, ser. ICSE Companion ’08. New York, NY,
USA: Association for Computing Machinery, 2008, p. 921–922.
[Online]. Available: https://doi.org/10.1145/1370175.1370188


