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Abstract

API protocols specify sequence constraints on API
calls. They are typically available in form of fi-
nite state machines. Traditionally, API protocols are
checked during runtime only: With each API call, the
state in the state machine is tracked. If this leads to
an error state (or an unsupported operation in a given
state), the protocol is violated. However, it would be
much more desirable to check adherence to the proto-
col statically, i.e., prior to execution of the code. In
this paper, we report on our endeavors and experi-
ences on doing such checks statically.

1 API Protocols

A given API typically comes with some assumptions
on how it will be used. For example, consider a file
I/O API. A file has to be opened before it can be read,
and no more data can be read from it once it has been
closed. A typical API protocol for file operations thus
may look like this:

(fopen (fread|fwrite|fseek)* fclose)*

This regular expression specifies all allowed sequences
of operations on this API. We treat API functions as
the basic symbols, so valid function call sequences are
the words of that language. Like any regular expres-
sion, this can be transformed to a deterministic finite
automaton (DFA).

Of course, not all API protocols are expressible in
a regular language. For example, it is not possible to
specify that in a stack component, pop may only be
called as many times as push has been called before:
That would require a context-free language. We still
stick to regular expressions due to practicability rea-
sons; it is also the standard in related work on the
topic [3]. For the stack example, we can still come
up with a useful API protocol: It can ensure that we
only pop when we know that there is something on
the stack.

(push | isEmpty | isEmpty pop | push pop )*

2 Checking Protocol Adherence

We now want to check whether a given application
that uses the API adheres to the protocol, i.e., if it
obeys its sequence restrictions. Let us assume that we
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Figure 1: Approach

have another automaton that represents all possible
API call sequences, which has been extracted from the
code. Then our task can be rephrased as comparing
the languages represented by the two automata.

Let us denote the language that a DFA A accepts
by L(A). The difference of the languages of two DFAs
A and B is computed as L(A)−L(B) = L(A∩B). The
complement of a DFA is derived by making accepting
states non-accepting and vice versa. The intersection
of two automata is computed by product construction.
With these standard ingredients, we can calculate the
language differences between protocol automaton P
and implementation automaton I. They can be inter-
preted in the following way:

L(I) ⊆ L(P ) The API is correctly used.
L(I) 6⊆ L(P ) The code violates the protocol.
L(P ) ⊆ L(I) The code uses the entire protocol.
L(P ) 6⊆ L(I) The code does not use everything

that is allowed by the protocol.

Furthermore, the corresponding difference au-
tomata (when non-empty) can provide hints about
what exactly the violation or unused feature is. This
can help a developer in quickly finding and fixing the
underlying problem.

3 Simple Implementation Automaton

For a first evaluation of this idea, we implemented
a simple static implementation automaton extraction
approach and the automaton transformations as de-
scribed above. It is sketched in Fig. 1 and works like
this:

First, the control flow graph for each function is
taken on basic block level. Each basic block is rep-
resented as a sequence of two nodes (entry and exit),
and these nodes are connected according to the con-
trol flow between blocks. For basic blocks that con-
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Figure 2: Initial extracted automaton.

tain calls, this sequence (of two nodes) is then trans-
formed to a sequence of call and return edges. Af-
ter this has been done for all functions, inlining of
functions is performed: Each pair of call/return edges
is supplemented by the graph of the respective func-
tion (if it exists, and if it is not a recursive call). Fi-
nally, unnecessary intermediate nodes and edges (sub-
graphs that contain no calls at all) are removed. The
resulting graph is a combined call and control flow
graph (CCFG) for a given function. Note that this
graph may contain infeasible paths – it is an over-
approximation of all possible paths through all func-
tion calls.

To convert this graph to an automaton, we cre-
ate a non-deterministic automaton where each node
is a state and each edge is a transition. Edges that
correspond to a function call of the API under consid-
eration become transitions labeled with the respective
symbol, all other edges become ε edges. Only the exit
node becomes an accepting state. Then, the automa-
ton is converted to a deterministic one using subset
construction. The result is an automaton that con-
tains all API call sequences that can potentially occur
in the code, along with infeasible ones.

Two problems occur for this very simple approach:
Firstly, it does not distinguish between different in-
stances of API usages, e.g., when different files are
processed in parallel. Secondly, it abstracts away a lot
of information so that the results are quite imprecise.
However, the general transformation from CCFG to
automaton can also be applied on the results of more
advanced extraction algorithms. For example, object
process graphs could be used instead [1] to increase
precision.

4 Example

To evaluate this approach, we took the file API proto-
col from above and used a small compiler written in C
as subject system. The compiler reads an input source
file and ultimately writes an output binary file. We
extracted the CCFG for the compiler code and trans-
lated it to an FSM. The result is shown in Fig. 2.
Apparently, the sequence of operations can stop in
any step. A quick check in the code reveals that this
is due to error handling. So we add error handling to
our protocol: After any operation, we may jump to an
error final state. We choose log error as the function
that indicates this, so we enforce error logging in ev-
ery error case. The resulting code automaton consists
of 14 states, and the resulting difference automaton
I − P is partly shown in Figure 3. The difference
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Figure 3: Difference automaton (implementation au-
tomaton minus protocol automaton) shows violations.

automaton is non-empty, which means the extended
protocol is violated, and the language of the automa-
ton consists of all violations. We can thus easily see
from the Figure that, e.g., fread may be called after a
log error, and that the program may terminate after
fread without logging. However, all that is subject
to the limitation that these may be infeasible paths
(in fact, most of them are). Furthermore, it turns out
that log error is too general to be used in the file
I/O protocol – it is used in many other error cases as
well.

5 Protocol Recovery

The technique introduced above can also be used
to interactively reconstruct API protocols from code,
in a way similar to the well-known reflexion analy-
sis [2]: The user formulates an API protocol hypoth-
esis, checks it against the code, gets feedback in the
form of difference automata, adjusts the hypothesis,
and iterates until the result is satisfactory.

6 Conclusion

We introduced a lightweight technique for checking
API protocols against code. The technique can also
be used to infer such protocols iteratively and thus
support in program understanding. Despite the im-
precise static extraction technique used, the results
still give valuable insights into the analyzed program.
We therefore conclude that the approach has the po-
tential to be useful in practice.
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