
Commit-Based Continuous Integration of Performance Models

Martin Armbruster (martin.armbruster@kit.edu)

KASTEL - Institute of Information Security and Dependability, Karlsruhe Institute of Technology

1 Introduction

Architecture-level performance models (aPM) such as
the Palladio Component Model (PCM) [5] can be used
for, e.g., performance predictions to explore design al-
ternatives and combines the aspects of architecture
and performance models. An up-to-date architecture
model can support the software maintenance by re-
ducing the architectural degradation or guide the soft-
ware evolution. At the same time, performance mod-
els allow the investigation of the software performance
without the need to implement or change the system.
However, keeping them up-to-date requires manual ef-
fort which hinders their adoption. Especially in the
agile software development which is characterized by
incremental and iterative development cycles, no or
short design phases prevent manual modeling activi-
ties.

2 Foundations

PCM The PCM is a metamodel and framework for
describing and analyzing component-based software
architectures [5]. In Repository models, components
and their interfaces with offered and required ser-
vices are defined. Furthermore, a component includes
Service Effect Specifications (SEFF) which abstractly
model the behavior of services in terms of actions
including, e.g., calls to other services. Performance
model parameters (PMP) such as a resource demand
can be attached to actions which are then employed
during PCM simulations to predict the performance.

There are approaches such as the Reconstructive
Integration Strategy [3] which extract a PCM from
source code. However, they do not support incremen-
tal updates and would extract a complete PCM for ev-
ery source code change. In addition, the Coevolution
approach [3] is able to incrementally update a PCM
based on code changes. Nevertheless, it assumes the
availability of editors that record the changes during
the development.

Continuous Integration of Performance Mod-
els (CIPM) Addressing the aforementioned issues
of keeping aPMs up-to-date with automatized activi-
ties, the CIPM approach proposes a Continuous Inte-
gration (CI) pipeline [4]. As first step in the pipeline,
a commit-based integration strategy extracts changes
from a commit and incrementally updates an aPM.
At the same time, relations between code elements

and their corresponding elements in the aPM are es-
tablished. To estimate the PMPs, the source code is
adaptively instrumented, i.e., only the parts of the
source code which have changed are instrumented,
and monitored. The taken measurements are used to
calibrate the aPM. As a consequence of the adaptive
instrumentation and monitoring, the monitoring and
calibration overhead can be reduced. Moreover, un-
affected PMPs are not estimated again because they
have not change.

The CIPM approach’s realization supports Java as
source code and targets the PCM as aPM. Parts of the
pipeline were prototypically implemented and evalu-
ated in previous work. In particular, a delta-based ex-
traction of changes from a commit was implemented
and evaluated with an artificial Git history. In a sec-
ond and third work, the adaptive instrumentation was
implemented twice which inserts the text-based in-
strumentation statements into a copy of the source
code. Both implementations derive the insertion lo-
cations from an instrumentation model which stores
the SEFF actions to instrument as instrumentation
points. Moreover, a calibration pipeline was imple-
mented in the third work and evaluated with three
case studies.

3 Approach

This master thesis [1] presents an approach building
upon the previous work with these two main goals:
(1) closing the gaps by completing the pipeline for the
aPM extraction and instrumentation, and (2) evalu-
ating the pipeline with a real Git history. As a result,
in the approach, the Java source code in the state
of a new commit is parsed into a code model. By
a state-based comparison with the code model of the
previous commit, a delta-based change sequence is ob-
tained which describes how the code model of the pre-
vious commit can be transformed into a code model
conforming to the state of the new commit.

Afterwards, the changes are utilized to incremen-
tally update the PCM, i.e., only the PCM elements
affected by the source code changes are updated while
the other PCM elements remain unchanged. The
PCM update is defined by technology- and project-
specific rules which specify how a change in the Java
code model is reflected as changes in the PCM. Thus,
the rules allow to obtain an architecture model with
respect to the applied technologies and to project-



specific conventions in the code.
In this thesis, the implemented rules are targeted

at extracting the architecture of Microservice-based
applications where a Microservice is modeled as a
component. Thus, in a first step, Microservices are
found by the organization of the source code in mod-
ules of the build system which are recognized by build
files. In addition, the rules cover Jakarta Servlets and
Jakarta RESTful Web Services (JAX-RS) to identify
the Microservices’ REST APIs in a second step which
are represented in PCM interfaces. As an example, if
a module of the build system is removed, the corre-
sponding component in the PCM is also deleted. On
the other hand, if a class with a corresponding PCM
interface is renamed, the PCM interface is renamed,
too.

In case of changes in a method with a corresponding
SEFF, the SEFF is updated by adding or removing
actions and revising the relations to the statements in
the code. Those changes in the actions are reflected
one-to-one in the instrumentation model by adding or
removing instrumentation points.

As last step in the thesis’ approach, the source code
is adaptively instrumented. During the instrumenta-
tion, a copy of the code model is extended with the
instrumentation statements whose insertion locations
are based on the instrumentation model and the rela-
tions between the SEFF actions and the correspond-
ing source code statements. The instrumented code
model is printed as source code which can be compiled
and executed to take the required measurements for
the calibration.

4 Evaluation

The evaluation of the presented approach aims at find-
ing out how accurate the generated models are, how
accurate the code is instrumented, and how large the
reduction of the monitoring overhead is compared to
a full instrumentation of the source code. Therefore,
the evaluation is executed with the TeaStore1 which
is a web-based store for tea and related products [2].
Its commits between version 1.1 and 1.3.1 are divided
into four intervals and propagated within the intervals
to simulate the development. All intervals span 292
commits of which 58 commits include changes in 144
Java files with overall 10030 added and 8270 removed
lines.

To assess the accuracy of the generated models,
the updated Java code model is compared to a newly
parsed model corresponding to the specific commit.
The automatically updated PCM is compared to a
manually updated one. In order to obtain a manual
PCM, the changes of a commit are manually analyzed
and applied on the previous PCM according to the
rules defined in the approach.

1https://github.com/DescartesResearch/TeaStore

For the instrumentation, several indicators are con-
sidered. They include a counting of the statements be-
fore and after the instrumentation, a compilation of
the instrumented code, and a partly manual inspec-
tion of the instrumentation statements. At last, the
reduced monitoring overhead is calculated as the ratio
of the actual instrumented instrumentation points to
all potential instrumentation points.

The evaluation results indicate that the generated
models are accurately updated and the source code is
accurately instrumented. The reduction of the moni-
toring overhead ranges between 60.5% and 97.6%. As
a consequence, the thesis’ approach leads to an im-
proved usability of the CIPM approach and a reduced
effort through automatization.

References

[1] Martin Armbruster. “Commit-Based Continuous
Integration of Performance Models”. Master The-
sis. Karlsruher Institut für Technologie, Sept. 14,
2021. doi: 10.5445/IR/1000154588.

[2] Jóakim von Kistowski et al. “TeaStore: A Micro-
Service Reference Application for Benchmark-
ing, Modeling and Resource Management Re-
search”. In: Proceedings of the 26th IEEE Inter-
national Symposium on the Modelling, Analysis,
and Simulation of Computer and Telecommuni-
cation Systems. MASCOTS ’18. Milwaukee, WI,
USA, Sept. 2018.

[3] Michael Langhammer. “Automated Coevolution
of Source Code and Software Architecture Mod-
els”. PhD thesis. Karlsruhe, Germany: Karlsruhe
Institute of Technology (KIT), 2017. 259 pp. doi:
10.5445/IR/1000069366. url: http://nbn-
resolving.org/urn:nbn:de:swb:90-693666.

[4] Manar Mazkatli et al. “Incremental Calibration
of Architectural Performance Models with Para-
metric Dependencies”. In: IEEE International
Conference on Software Architecture (ICSA
2020). 2020. doi: 10.1109/ICSA47634.2020.
00011.

[5] Ralf H. Reussner et al., eds. Modeling and Simu-
lating Software Architectures – The Palladio Ap-
proach. MIT Press, 2016. 408 pp. isbn: 978-0-262-
03476-0.


