Code Smell Detection using Features from Version History

Ulrike Engeln
Institute for Software Systems, Hamburg University of Technology

1 Introduction

Code smells are indicators for bad quality of source
code. In 1999, Fowler and Beck introduce the concept
of smells to ease identification of refactoring opportu-
nities in software. They define about 20 structures in
code that commonly require re-engineering.

Manual identification of smells is usually time-
consuming and costly since deep understanding of the
whole software project is necessary to, for example,
identify dependencies in the code. Therefore, there
exist several attempts of automated code smell de-
tection in literature. Most of them are based upon
static properties of the software, e.g., code metrics.
However, not all design flaws are of structural nature.
There exist three different kinds of code smells. They
target coding style, responsibilities, and interdepen-
dencies of classes or methods. While smells that tar-
get coding style are of structural nature only, smells
that describe interdependencies, e.g., Feature Envy,
cannot be detected by structural properties. For iden-
tification of such smells, Palomba et al. propose us-
ing the version history of the code as source of infor-
mation. Smells targeting responsibilities affect both,
code metrics and version history. For example, God
Classes usually have many lines of code and appear
frequently in the version history.

A well suited approach for the development of a
smell detector are machine learning techniques that
learn based on features, i.e., measurable properties of
the software under investigation, e.g., code metrics.
If we apply machine learning techniques to automate
smell detection, then we expect classifiers trained on
code metrics and information from version history to
produce orthogonal results since they focus on dif-
ferent aspects of smells. To improve performance in
code smell detection and enable a classifier to detect
all three kinds of smells, Barbez et al. introduce a
hybrid, ensemble learning-based smell detection tech-
nique, which combines classifiers using code metrics
and information from version history. We propose a
different approach of combining the two sources of in-
formation, which, rather than combining existing de-
tectors, directly learns identification of smells from the
two sources of information.

Since in their work Palomba et al. do not draw
features from version history but apply heuristic rules,
one major issue of our machine learning approach is
to decide how to express information from the version
history by features.

2 Features from Version History

The introduced method of feature extraction from ver-
sion history builds the core of our work. The general

idea is to measure how often files or methods change
simultaneously.

We introduce three design parameters, which de-
termine which parts of version history are considered
as simultaneous change.

e Direction specifies whether prior or future
changes are evaluated.

e Window size specifies the number of history en-
tries that are considered.

e Weighting specifies how changes are weighted
as function of their distance.

For the weighting, we define a constant, a linear,
and an exponential strategy as follows:

1, if distance < window_size.
Weonst = .
0, otherwise.

distance

- " window_size’
Wlin = .
0, otherwise.

if distance < window_size.

Q- distance “if distance < window_size.
Wexp =

0, otherwise.

Figure 1 illustrates the general idea of measuring
simultaneous changes. For each file, we create a vector
containing entries for all available files. We identify all
commits containing the file and distribute points for
all files that appear within the defined window (here:
forward oriented of size 3 starting from commit 2)
according to the chosen weighting strategy.

== const

file_a, file_b, file_c

commit 5
= lin

(V] w
L

file_t commit 4 = exp

commit 3

distance
—
L

f==}
L

file_c commit 2

0.5 1 1.5

file_a, file_b ’ weight

commit 1

Figure 1: Concept for distributing weights from git
history for file_.c. Relevant commits are colored.
Right: different weighting concepts.

We use statistical description of the normalized
weight vectors, among others maximum, median and
mean, as historical features.

3 Evaluation of Historical Features
For evaluation of the introduced historical features we
investigate the following research question.

RQ1: Do the historical features introduced
in this work lead to better code smell detec-
tion compared to using only code metrics?

We answer the formulated question through three
hypotheses, which we test on the code smells God
Class and Feature Envy. We select those two smells
since they target responsibility and interdependencies,
respectively. They belong to the two kinds of smells
that we expect to show in version history. Further,
for the two smells, labeled data is available in existing
work.

With the first hypothesis,

RQ1.H1: There exists information about
smells in version history.
we seek to verify whether the designed historical fea-
tures can capture information about smells from ver-
sion history at all.

The second hypothesis investigates the impact of
the design parameters:

RQ1.H2: For Feature Envy, most informa-

tion is gained from history if metrics focus

on the close past.
We assume that, especially for smells that target in-
terdependencies, the choice of design parameters (see
Sec. 2) matters.

The last hypothesis addresses the core of our work.
We explore whether historical metrics complement
code metrics assuming that:

RQ1.H3: In particular for detection of
smells that target interdependencies, infor-
mation from version history adds value com-
pared to using only code metrics.

For verification of the hypotheses, we perform
experiments following the workflow from Figure 2.
As ground truth, we apply the available data from
Madeyski et al. and Palomba et al. [2, 3]. We have 111
instances of God Class and 125 instances of Feature
Envy available. For each smell, we add good instances
such that we obtain a data set of ﬁ smelly instances
and % good instances. We extract code metrics and
historical features of all instances from the data sets
of the two smells. Next, we split the available data
into test and training part where we ensure that data
from a project either appears in the test or the train-
ing data to avoid correlation in the data sets. The
training data is used to train a random forest of 100
decision trees, which we evaluate by different perfor-
mance measures. For more reliable evaluation results,
we repeat the training process applying 10-fold cross-
validation.

testing
O git /_\

& EEsmEmsas
= - aining — EEErT -
= (o] training -
Java pe"staticAn " B -

Ay zapn .
Ground Truth eri Classifier Validation

Feature Generation

Figure 2: General workflow of the experiments.

4 Results

Evaluation of RQ1.H1 shows that historical features
contain information about code smells. For RQ1.H2,

surprisingly, we are not able to identify specific design
parameters that show best performance. The results
of RQ1.H3, finally, are given in Table 1. For God
Class, we observe improvement of 0.3% to 1.8% in all
performance measures but precision, which decreases
by about 0.4%. For Feature Envy, we observe a sig-
nificant improvement, e.g., Fl-score increases from

43.03% to 54.36%.

Table 1: Performances with and without historical
features.

Feature Envy God Class
code with code with
metrics history = metrics history

Accuracy 90.79% 92.18% 95.95% 96.22%
F1-Score 43.03% 54.36% 74.87T% 75.72%
Precision 57.20% 70.20% 77.22% 76.83%
Recall 42.37% 49.94% 73.96% 75.74%
AUC 0.6885 0.7323 0.8651 0.8737

5 Conclusion and Future Work

In our work, we introduce a method to draw historical
features that improve smell detection. Results from
Section 4 show that historical features allow for better
detection of smells targeting interdependencies, e.g.,
Feature Envy. For God Class, the observed differences
are too small to assume an impact.

Future work should focus on four points:

e impact of the design parameters of the features,

e value of historical features for smells targeting re-
sponsibilities,

e extension to other smells,

e extension to other programming languages.

A major challenge of any empirical evaluation, and
thus for all open points, is the availability of ground
truth since there barely exist labeled data of code
smells. In our work, we observe that results highly
depend on the selected training and test set. Thus,
a wider data set could lead to more insights for the
first two points. Extension to other smells requires
further data sets. For the fourth point, an alternative
to training on new data is the application of trans-
fer learning, which we investigate in the master thesis
that belongs to this paper [1].

References

[1] Ulrike Engeln. Transfer learning code smells using
version history. Master’s thesis, Hamburg Univer-
sity of Technology, Forthcoming 2023.

[2] L. Madeyski and T. Lewowski. Mlcq: Industry-
relevant code smell data set. EASE ’20, page
342-347. ACM, 2020.

[3] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto,
D. Poshyvanyk, and A. de Lucia. Mining version
histories for detecting code smells. IEEE Trans.
Softw. Eng, 41(5):462-489, 2015.

