
Developing the Software of Future Cars: A Car DevOps Approach

Marcel Weller, Miles Stötzner, Floriment Klinaku, Steffen Becker
Institute of Software Engineering, Software Quality and Architecture,

University of Stuttgart, Stuttgart, Germany
{firstname}.{lastname}@iste.uni-stuttgart.de

Abstract

The amount of deployed software in cars is increas-
ing. Simultaneously, software is updated in shorter
release cycles. As a consequence, car manufacturers
face new challenges in the management of software.
The project Software-Defined Car (SofDCar) consists
of academic and industrial partners addressing the
development of foundations for a new software devel-
opment methodology for future car generations. This
methodology demands for new roles and continuous
engineering activities during the whole car software’s
lifecycle. As part of this project, we research several
interconnected topics addressing these challenges. We
focus on the modeling and orchestration of car fleets,
which includes topics such as variant management of
car topologies and Over-the-Air updates. Furthermore,
the communication between cars and surrounding sys-
tems is investigated for use cases such as cooperative
overtaking in which cars autonomously overtake each
other. Finally, we put all contributions together in a
Car DevOps approach.

1 Introduction

Leveraging software is a significant key to success in the
automotive industry. Almost all aspects of modern cars
are impacted by the use of software. As a consequence,
the amount of software and its variants in cars and in
the ecosystems of cars (edge or cloud) is constantly
rising. In addition, the software in the car and its
ecosystem is no longer statically defined at construction
time but needs to evolve over the car’s whole lifetime.

As a consequence, the management of the complex
ecosystem of the car’s software is becoming an engi-
neering challenge. In this paper, we highlight three
aspects of the overall challenge we are working on.
First, we focus on the safe implementation of complex
car maneuvers in Car2X scenarios such as cooperative
overtaking. This requires tight integration of message
exchange to coordinate different control loops in the
participating cars. Such features involving a single or
a few cars in contrast to fleets of cars are implemented
by developers of car features. The second focus is on
the flexible deployment and redeployment of software
throughout all layers of the automotive ecosystem and
throughout the lifetime of the car. This activity is
coordinated by a variability manager role. The third

aspect addresses the scalability challenges in various
Over-the-Air (OTA) update scenarios posed by the fact
that all management activities have to be performed
for large fleets of cars in resource-constrained networks.
This has to be implemented by fleet operators and their
runtime scalability experts. Putting together all three
contributions results in a Car DevOps approach in
which the whole software lifecycle and its variants get
managed over the whole software lifecycle. For this,
we have identified roles and their tasks resulting from
the discussed contributions.

In the literature, we can find already proposed so-
lutions for various aspects of the addressed problem.
However, it is still lacking a holistic and integrated ap-
proach including tailored processes and accompanying
developer roles.

To address the raised challenges, we outline in this
paper our contributions to the SofDCar project. SofD-
Car is funded by the German Federal Ministry for
Economic Affairs and Climate Action (BMWK) and
tries to provide holistic solutions to the challenges
posed by software usage in modern cars. In particu-
lar, we propose the use of MechatronicUML models to
analyze and implement complex car maneuvers, the
extension of TOSCA towards TOSCA4Cars to manage
the car’s software and its variability and evolution over
the car’s lifetime, and the use of Palladio scalability
prediction models to analyze the scalability of proposed
management activities on the scale of fleets of cars.

The paper is structured as follows. Section 2 in-
troduces our motivating scenario used throughout the
paper. Section 3 outlines the use of MechatronicUML
models for cooperative overtaking. In Section 4, we
outline TOSCA4Cars and provide a sketch of how it
helps developers to deal with the huge amount of vari-
ants in the automotive domain. Section 5 addresses
OTA updates and their scalability needs on the level of
fleets of cars. In Section 6, we put together all pieces
and outline a Car DevOps approach to support all
three contributions on the process level before Section
7 concludes the paper.

2 Motivating Scenario

Our motivating scenario consists of two driving cars
whereas one car intends to overtake the other one au-
tonomously, as shown in Figure 1. Thereby, when



Roles and Concerns

Environment Context

OperatorDeveloper Variability Manager

OEM

Developing the next
generation features

Integrating new
features into cars

Rolling out new
features to car fleets

Supplier

Figure 1: Overview of the roles and their concerns along with the motivating scenario of a cooperative overtaking
scenario.

encountering obstacles such as another car, the cars
should slow down or even stop. This feature is realized
through Car2X communication so that cars contain
software components that are responsible for commu-
nication with other traffic entities, i.e., other cars or
infrastructure like traffic lights. The communication
can be carried out either directly between the entities
or over a communication service running on the edge.
These different components are provided by different
suppliers and form a complex system that must be
integrated and rolled out by the OEM into the cars.
There are different roles involved each having its own
specific concerns.

At the side of the supplier, there is the developer
role. The responsibility of the developer is to design
and implement a specific feature of the car. Such
a feature can, for example, be the aforementioned
autonomous overtaking and therefore include function-
ality that involves multiple components. The feature
is then supplied to the OEM and integrated into the
car ecosystem, including, e.g., backend systems in the
cloud or edge. The developer wants to provide an im-
plementation of the feature that is functionally correct
and fits the design. At the same time, they want to
keep the implementation effort low to minimize cost
and time. Moreover, during the lifecycle of the cars,
the developer is responsible for providing updates to
the features, e.g., improvements or security patches.

At the OEM side, the variability manager role and
the operator role are involved. The variability man-
ager is responsible for deciding which software and
hardware components are installed in which car and
how they are configured. Thereby, there is a huge
variability introduced due to market, technical, legal,
and customer requirements. As a result, every car
is unique on its own. Thus, the variability manager
is concerned about deriving the component topology
of each car while keeping the management effort low.
Moreover, new components as well as new versions or

variants of components are developed over time and
must be integrated into car lines and cars in the field.

The operator at the OEM who is responsible for
rolling out new features to the car fleet has concerns on
the overall update process. We focus on the concerns
of the operator in the context of over-the-air (OTA)
updates, in contrary to classical on-site in the work-
shop updates. Alongside concerns on the functioning
of the update process, for example, that updates are
correctly deployed and installed on the car, there exist
additional concerns related to the quality of the dis-
semination. The operator has typical concerns about
the qualities of service (QoS) for the update dissem-
ination process expressed through questions like: (1)
what is the overall update time for a fleet of cars of
certain size?, (2) what is the maximum number of
cars that can be updated at the same time?, (3) how
cost-efficient is the update process?, (4) does it utilize
cloud/edge elasticity for variability in the workload
represented by the formed platoons and overall fleet
size? Such concerns can be addressed early at the time
of designing the dissemination process and supported
through QoS-aware interfaces at runtime.

In the following, we further discuss each role in
more detail.

3 Model-Driven Development of Event-
based Automotive Applications

Cars are distributed cyber-physical systems (CPS) con-
sisting of over 100 electronic control units (ECUs) [8].
The software in a car is not only an integral part of
realizing advanced functionality such as autonomous
driving functions but is also used for implementing ba-
sic functionality like braking. Therefore, car software is
highly complex, security- and safety-critical, and often
requires hard real-time properties. However, commu-
nication based on Remote Procedure Calls (RPC) is
used predominantly which results in a tight coupling



Roles of OEM

Developer

Software Feature

MechatronicUML
Code Generator </>

Source CodeMechatronicUML
Models

Version: 1.0

1

2

3

Figure 2: Envisioned workflow of the developer: The
developer models the software feature using the Mecha-
tronicUML (1), generates the source code with the
MechtronicUML Code Generator (2), and supplies
both artifacts combined as the software feature to the
roles of the OEM (3).

between individual services of the whole car software
system. This can lead to a fault in one service propa-
gating through large parts or even the entire system.
Additionally, cars are no longer seen as final prod-
ucts but can be updated with new functionality after
production, and consequently, car software should be
maintainable and able to evolve.

To support developers in designing and imple-
menting car software, we apply the MechatronicUML
(MUML), a model-driven software engineering (MDSE)
method specifically designed for CPSs that accompa-
nies developers throughout the whole development
process [2, 4, 15]. The MUML provides a language
to model car software independent of the hardware
platform. Developers can use the MechatronicUML
Code Generator to automatically generate the source
code based on the abstract MUML models so that less
or even no manual implementation is needed. This
reduces the effort for the developers and ensures that
the implementation corresponds to the design. Fur-
thermore, the MUML provides means to model behav-
ioral aspects of the software which explicitly considers
hard real-time properties and supports event-based
communication. Based on this, we investigate the ap-
plication of event-based communication in and around
cars to develop loosely-coupled services that are less
error-prone and better to maintain. This includes com-
munication between the software components in a car
and Car2X communication.

In the following, we describe how we envision the
application of the MUML by the developer role and
describe the relevant features of the MUML in more
detail. We present an overview of this process in Fig-
ure 2. As the first step of this process, the developer de-
signs the software feature by creating models with the

MUML (see Step 1 in Figure 2). For this, the MUML
follows an approach called the platform-independent
modeling. It allows the developer to model the soft-
ware feature as components that are independent of
the actual vehicle hardware platform. According to
the motivating scenario, we create one component for
the driving functionality and another one for the over-
all coordination like communication with other cars.
From these components, the developer defines compos-
ite components, e.g., the whole car. The (composite)
components are parameterized and can be instanti-
ated into component instances with specific parameter
values.

For expressing the interfaces of a component, the
developer adds ports to the component. The devel-
oper then connects the ports of different components
and defines and assigns protocols to these connections
to define the data that is exchanged. Through these
protocols, the developer adds Quality of Service (QoS)
assumptions to connections for modeling hard real-
time properties if required. The developer models the
behavior of the defined software components using
state charts that they associate with a specific port
of the component. State charts consist of states and
transitions between those states. The transitions are
bound to conditions like a specific incoming message
that define when the system transitions from one state
to another. Based on the motivating scenario, the fast
car may send an overtaking request to the slow car,
and should then change the lane and accelerate if the
slow car accepts. We can model this behavior in the
state charts: When the port of the fast car receives
an incoming “overtake request accepted”-message, it
switches from the default driving state into the over-
taking state which triggers internal functions to switch
the lane and accelerate.

At a later stage, the developer models the different
ECUs in the car or other computing nodes as hardware
components in a hardware platform model, including
their resource capabilities. After that, the developer
creates an allocation of the software components of the
platform-independent model to the hardware compo-
nents. This results in a platform-dependent model that
comprises all given information. With this approach,
the developer can design the car software independent
of the target hardware platform, and the car software
can potentially be used for different car variants, car
series, or even by different OEMs.

Moreover, as shown by Step 2 in Figure 2, the devel-
oper supplies these MUML models to the open-source
MechatronicUML Code Generator for generating a spe-
cific implementation [10]. The code generator is imple-
mented in the Eclipse Modeling Framework (EMF) for
realizing model-to-model and model-to-text transfor-
mations. It already supports the generation of source
code in the C programming language and several com-
munication protocols. More importantly, the code
generator is extensible so that the developer can add



Car Line

Car Line
Applications

OperatorDeveloper

Variability Manager

Applications

2a

2b

1

?

✓

Car Model

Car Line 

Base Model

ConfigurationVariable 

Deployment Model

Figure 3: Overview of the method for variability management of automotive deployment models.

transformations for their custom hardware platform
or protocols. For example, we added support for the
Message Queuing Telemetry Transport (MQTT) pro-
tocol to enable event-based communication between
the cars. With this, the code generator produces the
code for sending and receiving MQTT messages on the
corresponding software components. In addition, it
generates configuration files for an Eclipse Mosquitto
MQTT server, a message broker software that can
be deployed on a backend server to which the cars
connect.

Finally, the developer supplies the generated source
code together with the MechatronicUML models as
the software feature to the roles of the OEM (see
Step 3 in Figure 2). For providing a new version of the
software feature, the developer must only update the
MechatronicUML models and regenerate the source
code.

4 Variability Management of Automo-
tive Deployment Models

The variability manager is responsible for deciding
which software and hardware components are installed
in which car and how these components are config-
ured. Manually managing software and hardware is
error-prone and time-consuming. In the cloud domain,
there are established deployment automation technolo-
gies, such as Ansible, Puppet, and TOSCA, that could
be used to manage software and hardware in cars.
Such technologies are typically based on deployment
models which declaratively model the desired applica-
tion state. By interpreting such deployment models,
these technologies then automatically derive required
deployment and management tasks [7].

However, there is a huge variability in the auto-
motive domain due to technical, legal, and marketing
requirements. For example, autonomous driving fea-
tures, such as the cooperative overtaking application
from our motivating scenario, require specific sensors
which are not installed in every car and might be al-
lowed in the US but not in Germany. Moreover, cars
are highly customized to address customers’ prefer-

ences or budgets, thus, autonomous driving features
might be disabled. As a result, each produced car is
unique on its own. Manually creating and maintaining
a deployment model for each car is error-prone and
time-consuming.

To tackle this, we envision a method to manage ap-
plications in the automotive domain based on deploy-
ment models in combination with variability manage-
ment concepts from product line engineering. Product
line engineering is an established method to manage
the variability of products with the goal to derive
a customized product [1, 9]. We chose the Topol-
ogy and Orchestration Specification of Cloud Appli-
cations (TOSCA) [12] as the underlying deployment
automation technology since TOSCA is an open stan-
dard that promises vendor-neutrality and technology-
independence. Moreover, we introduce TOSCA4Cars
as an implementation of our method.

Our envisioned method is based on three build-
ing blocks: (1) a metamodel for variable deployment
models to model the different variants of how an ap-
plication can be deployed, (2) a method to derive the
deployment model of specific cars by combining vari-
able deployment models, and (3) a method to update
the deployment models of specific cars. An overview
of our method is given in Figure 3.

The variability manager models the variability of
each application in a so-called variable deployment
model [14] (see Step 1 of Figure 3). A variable de-
ployment model is a deployment model that contains
components and relations which have presence condi-
tions assigned which represent, e.g., technical or legal
requirements. After variability is resolved, elements
are removed whose conditions do not hold. For ex-
ample, the cooperative overtaking application from
our motivating scenario is modeled as such a vari-
able deployment model which contains all required
components but also all the different possible hosting
components. We discuss this building block in more
detail in previous work [14]. As a first prototype, we
have developed the open-source TOSCA management



t0 t0+Δ

Cloud resources

Edge resources Edge resources

Elastic

Elastic

Figure 4: Elastic OTA Updates

and processing tool OpenTOSCA Vintner1.
To manage not only single applications but com-

plete cars, the variability manager creates for each car
line a car line base model and a car line applications
set (see Step 2a of Figure 3). The car line base model
is an incomplete deployment model that models, e.g.,
the architecture of a specific car line in an abstract
manner. Moreover, this base model does not only con-
sider applications inside the car but also applications
in the cloud or at the edge which are consumed by the
applications running in the car, e.g., used to communi-
cate with other cars. The car line applications set is a
set of applications that are allowed to be used in the
respective car line. The variability manager derives the
car model of a specific car by combining the car line
base model with selected applications from the car line
applications set (see Step 2b of Figure 3). Therefore,
the variability manager requires a configuration that
represents, e.g., legal requirements and customer pref-
erences. Since the car model is a deployment model, it
can be executed to deploy and manage the applications
inside the car.

To integrate new applications into existing car lines
and cars in the field and to update already running
applications, the variability manager must update each
car model. Therefore, the variability manager conducts
the first two steps once again: new variable deployment
models are added to the car line applications sets and
car models are regenerated. Thereby, already bound
variability and limitations must be respected. For ex-
ample, if a new version of the cooperative overtaking
application requires a sensor that is not mandatory
for this car line then this application can not be in-
stalled in cars that have not been produced with this
sensor installed.

5 Elastic Over-the-Air-Update Strate-
gies for Car Fleets

Due to continuous innovation and development, there
is a large number of software updates that are rolled
out to end-users. This applies also to software that
is running in a vehicle. Hence, as we introduce, oper-
ators at the OEM side have reliability, security, and
performance concerns for the update process. Several
off-the-shelf solutions for over-the-air (OTA) updates
exist that span across the computing continuum, from
edge to cloud data centers (see Figure 4). The focus
of our work lies in researching relevant architectural
design decisions that balance the involved trade-offs
for the update process (i.e., how a desired security
level degrades performance).

Adopting off-the-shelf solutions for the over-the-
air update process may not satisfy the desired non-
functional requirements such as a certain end-to-end
completion time or a target utilization of resources.
Through understanding the present trade-offs we help
engineers develop better solutions for realizing over-
the-air updates. Our work is focused on two goals:
first, understanding the different types of updates and
update scenarios for software in cars. The second
goal lies in determining update strategies that meet
security and safety requirements and yield a good level
of performance at a low cost. The latter goal can be
paraphrased as aiming for elastic OTA updates.

To better understand the different types of software
updates for vehicles, we work on a classification scheme
and a set of scenarios with different peculiarities. We
consider two main scenarios: (1) OTA update while
driving and (2) OTA update at a stop (e.g., home or
charging station). Both scenarios can be refined further
to create more concrete scenarios which would either
benefit from the new conditions or be constrained by
them. For example, running an OTA update at a
charging station may have a more reliable network.

Another part is the characterization and classifica-
tion of software updates for cars. For example, Steger
et al. [6] classify software updates for vehicles into
three different criticality classes: non-critical (mainly
entertainment), body and control (e.g., ventilation),
and highly critical (e.g., safety-critical functions that
impact driving). The size of the update influences
performance and end-to-end dissemination time. The
classification of software updates for cars in different
dimensions helps in choosing fitting update strategies
for different classes.

Since realizations for OTA software updates require
computational resources from the edge to the cloud,
there exist several sources for performance bottlenecks.
Moreover, since the demand on each layer may change,
the underprovisioning of resources leads to degraded
performance. Although the overprovisioning of re-
sources improves performance, it increases cost. Ide-

1https://vintner.opentosca.org

https://vintner.opentosca.org


ally, we can forecast the workload and provision the
minimal amount of resources to handle the current de-
mand. Through model-based performance engineering
techniques, we aim at understanding better the in-
volved trade-offs and designing OTA update strategies
that meet such performance and elasticity require-
ments. The acquired knowledge can help in decision
making and refinement of current state of the art
frameworks.

Through a review of existing frameworks and litera-
ture, we extract several design decisions that have an
impact on the overall performance of the OTA update
process. For example, we distinguish three modes of
interaction between the update client in the vehicles
and the update server: Polling-Intervals, where clients
regularly, at a predefined rate, poll the server, Push,
where images are pushed directly to the clients, Op-
tional, where clients are notified for an update, but
the update is optional and depends on the driver, i.e.,
the driver can decide when and whether to apply the
update.

Since software updates are rolled out and managed
for a car fleet, another aspect is the continuity and life-
time of the managed fleet that undergoes an update:
in one case, the size of the managed fleet does not
change after a rollout is started (snapshot), whereas
in the other case, vehicles can be added dynamically
to the fleet and receive automatically the update (con-
tinuous). A third design decision concerns the image
type: complete image updates are rolled out to cars in
one case, whereas in the other case, delta updates are
created. In delta updates, images are created and sent
as a delta to the currently installed image, so only the
changed file blocks are rolled out.

Such design decisions in conjunction with decisions
on the runtime policies that govern the elastic provi-
sioning of resources yield the quality of a particular
solution. For elasticity prediction, we take a twofold
approach. First, we predict the impact and capability
of cellular networks like 5G and lower-level commu-
nication protocols on the overall performance. For
this, we rely on simulation libraries that allow us to
simulate Car2X scenarios in a network. One instance
is Simu5G [11], that takes an end-to-end approach and
allows the simulation of all protocol layers for Car2X
scenarios. Second, we estimate the performance at
the architectural level including the design of scaling
policies for edge and cloud resources. We achieve this
goal by performance modeling of the architecture using
Palladio [5]. In addition, we evaluate the suitability
of resource provisioning policies by modeling them at
the architectural level [13]. Through our approach,
the operators can predict the performance impact of
the employed resource provisioning policies. Moreover,
they know the impact and importance of several ar-
chitectural design decisions and the main performance
bottlenecks across the computing continuum.

6 A Car DevOps Approach

So far we have introduced different roles and concerns
involved in the development and operation of software
for future cars. However, what is still missing is a
holistic method that combines these roles into one
process. In the following, we discuss how the presented
roles interact and work with each other, and how
they share information and artifacts. An overview is
given in Figure 5.

The developer is responsible for designing and im-
plementing new features. The corresponding devel-
oped application and the associated MUML models
are passed to the variability manager who then cre-
ates a variable deployment model. Different variable
deployment models are then combined by the variabil-
ity manager to derive the car model of a specific car.
However, the variability manager does not execute
this car model on their own but passes it to the opera-
tor who executes the car model using, e.g., a specific
strategy to roll out new features in order to level out
workload spikes. After the feature has been rolled out
to cars in the field, the operator collects new data
from in-the-field observations. The developer evalu-
ates these data to improve the feature, develop new
features, or fix bugs. The new or updated applications
and their MUML models are then once again passed
to the variability manager. This essentially restarts
the whole process.

However, the process is not as straightforward as
just described. Further interactions between the roles
are required. For example, who is responsible for gen-
erating the code based on MUML models? A platform-
specific model is required for the code generation which
is, however, only known once the car model has been
derived. Thus, the variability manager must interact
with the developer once the car model has been de-
rived or must be able to generate the code on their
own. It may also be possible that the variability man-
ager already provides one or multiple platform-specific
models representing possible combinations of hardware
components to the developer, as the OEM has infor-
mation about the complete car software, including
features from different suppliers.

Another aspect is, that the developer has the
most expertise considering their own application, thus,
knows the most about modeling the corresponding vari-
ability. To utilize this, we envision roles with shared
responsibilities to bridge expertise in different domains.
Roles with shared responsibilities are an already es-
tablished concept in DevOps [3] in which developers
also take responsibility for operating their own ap-
plications due to their application-specific expertise.
Therefore, we introduce the roles DevVar, VarOps, and
DevVarOps which consider not only development and
operations but also variability management.

The DevVar is a developer who also takes the role of
the variability manager when it comes to managing the
variability of their own applications. Therefore, they



Car Fleet

Developer OperatorVariability Manager

Software Feature Car Model

DevVar

DevVarOps

VarOps

Release

Feedback

Figure 5: Overview of the different roles involved in our envisioned DevOps approach for cars.

do not only provide MUML models but also variable
deployment models for the variability manager at the
OEM who then integrates these models into car lines
considering OEM-specific requirements.

The VarOps is a variability manager who also takes
over some responsibilities of the operator. For ex-
ample, they are responsible for load forecasting, i.e.,
predicting the load of upcoming updates, based on
their knowledge of the existing variability in the fleets.

Ultimately, the DevVarOps is the combination of
all roles, thus, a developer who takes responsibility
for managing the variability of their own applications
along with operating them.

Figure 1 shows that the roles can be distributed
among different organizations, for example, a supplier
employing the developers and an OEM employing the
variability managers and operators. Similar to DevOps,
we envision that the roles with shared responsibilities
presented above are not necessarily executed by a sin-
gle person, but a team. The team members can be
employed by different organizations and work closely
together to achieve the common goal of the role with
shared responsibilities. Thereby, the team members
contribute organization-specific information (e.g., em-
ployees of the OEM may contribute details about the
hardware platform) while also ensuring the respective
objectives of their organization.

7 Conclusion

In this paper, we have outlined three aspects of a future
Car DevOps approach. We describe the use of Mecha-
tronicUML for coordinated overtaking, TOSCA4Cars
as a variability model for car software deployments,
and Palladio models for the scalability of OTA updates
on the fleet level.

Our contributions help software developers in the
car software domain to manage a more flexible develop-
ment process than it used to be in the past. Developers

can work in new roles aiming towards a more flexible
and more variant-aware software lifecycle.

In future work, we both need to define the models
sketched in the paper but also a process to keep them
up-to-date during the lifetime of the software. We will
continue to work on case studies to demonstrate the
feasibility of our approach in close collaboration with
the rest of the SofDCar consortium.

8 Acknowledgements

This publication was partially funded by the Ger-
man Federal Ministry for Economic Affairs and Cli-
mate Action (BMWK) as part of the Software-Defined
Car (SofDCar) project (19S21002).

References

[1] K. Pohl, G. Böckle, and F. van der Linden. Soft-
ware Product Line Engineering. Springer Berlin
Heidelberg, 2005.

[2] T. Stahl, M. Völter, and K. Czarnecki. Model-
driven software development: technology, engi-
neering, management. John Wiley & Sons, Inc.,
2006.

[3] L. Bass, I. Weber, and L. Zhu. DevOps: A Soft-
ware Architect’s Perspective. Addison-Wesley
Professional, 2015.

[4] S. Dziwok et al. The MechatronicUML Design
Method: Process and Language for Platform-
Independent Modeling. Tech. rep. tr-ri-16-352.
Version 1.0. Zukunftsmeile 1, 33102 Paderborn,
Germany: Software Engineering Department,
Fraunhofer IEM / Software Engineering Group,
Heinz Nixdorf Institute, Dec. 2016.

[5] R. H. Reussner et al. Modeling and simulating
software architectures: The Palladio approach.
MIT Press, 2016.



[6] M. Steger et al. “SecUp: Secure and Efficient
Wireless Software Updates for Vehicles”. In: 2016
Euromicro Conference on Digital System De-
sign, DSD 2016, Limassol, Cyprus, August 31
- September 2, 2016. Ed. by P. Kitsos. IEEE
Computer Society, 2016, pp. 628–636.

[7] C. Endres et al. “Declarative vs. Imperative:
Two Modeling Patterns for the Automated De-
ployment of Applications”. In: Proceedings of
the 9th International Conference on Pervasive
Patterns and Applications (PATTERNS 2017).
Xpert Publishing Services, Feb. 2017, pp. 22–27.

[8] M. Staron. Automotive Software Architectures.
Springer International Publishing, 2017.

[9] K. Pohl and A. Metzger. “Software Product
Lines”. In: The Essence of Software Engineering.
Cham: Springer International Publishing, 2018,
pp. 185–201.

[10] U. Pohlmann. “A Model-driven Software Con-
struction Approach for Cyber-physical Systems”.
PhD thesis. Universität Paderborn, Heinz Nix-
dorf Institut, Softwaretechnik, 2018.

[11] G. Nardini et al. “Simu5G–An OMNeT++ Li-
brary for End-to-End Performance Evaluation
of 5G Networks”. In: IEEE Access 8 (2020),
pp. 181176–181191.

[12] OASIS. TOSCA Simple Profile in YAML Ver-
sion 1.3. Organization for the Advancement
of Structured Information Standards (OASIS).
2020.

[13] F. Klinaku, A. Hakamian, and S. Becker.
“Architecture-based Evaluation of Scaling Poli-
cies for Cloud Applications”. In: 2021 IEEE In-
ternational Conference on Autonomic Comput-
ing and Self-Organizing Systems (ACSOS). 2021,
pp. 151–157.

[14] M. Stötzner et al. “Modeling Different Deploy-
ment Variants of a Composite Application in a
Single Declarative Deployment Model”. In: Al-
gorithms 15.10 (Oct. 2022), p. 382.

[15] Fraunhofer Institute for Mechatronic Systems
Design IEM. MechatronicUML. Available online:
http://www.mechatronicuml.org (accessed on
May 11th 2023).

http://www.mechatronicuml.org

	Introduction
	Motivating Scenario
	Model-Driven Development of Event-based Automotive Applications
	Variability Management of Automotive Deployment Models
	Elastic Over-the-Air-Update Strategies for Car Fleets
	A Car DevOps Approach
	Conclusion
	Acknowledgements

