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Abstract Artificial intelligence (AI) is revolution-
izing the world with groundbreaking innovations
on a weekly basis, yet its low reliability hampers
widespread adoption. Prompt engineering (PE), i.e.
the programming of general Al systems in natural lan-
guage to perform specific tasks, is essential for the
application and quality of many modern AI systems,
making it an emerging field of growing significance.

This paper demonstrates PE on a running example:
generating unit test cases for a given function. By iter-
atively adding further prompt patterns and measuring
the robustness, correctness, and comprehensiveness of
the AI’s output, multiple prompt patterns and their
purpose and strength are investigated.

We conclude that high robustness, correctness,
and comprehensiveness is hard to achieve, and many
prompt patterns (single prompt as well as patterns
that span over a conversation) are necessary. More
generally, quality assurance is a dominant part of PE
and closely intertwined with the development part of
PE. Thus traditional testing processes and stages do
not adequately apply to QA for PE, and we suggest a
PE process that covers the development and quality
assurance of prompts as alternative.
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1 Introduction

This paper firstly introduces Large Language Models
(LLMs) and Prompt engineering (PE), by covering
the history of Deep Learning, which leads to LLMs,
prompts, criteria when designing prompts, prompt
patterns, and few-shot learning.

We then present a PE use-case for quality assur-
ance (QA): engineering a reliable prompt for gen-
erating unit tests, employing ChatGPT-4. Build-
ing upon a simple promp, further prompts are iter-
atively derived by adding prompt patterns to improve
the prompt’s robustness, quality, and comprehensive-
ness. This showcases prominent prompt patterns,
their combinations, and the prompt engineering pro-
cess. We conclude that, in general, GPT models can
generate tests, but full robustness, correctness, and
comprehensiveness are hard to achieve and strongly
depend on the prompt and the way we interact with
the LLM.

Drawing from the use-case conclusion, the paper
generalizes these insights in a discussion about QA
for PE, stating that: (1) QA is a dominant part of
PE, which is also substantiated on the leaked pre-
fix prompt for Bing-Chat (2) QA and development
are closely intertwined in PE, impeding a clear sep-

aration. (3) Traditional testing processes and stages
do not adequately apply to QA for PE. Due to these
findings, a prompt engineering process that covers the
development and assurance of high quality prompts is
suggested.

1.1 Deep Learning and Large Language
Models

Machine Learning (ML) is a subset of AI that al-
lows computer systems to learn directly from data in-
stead of explicitly programming rules and heuristics.
Most state-of-the-art ML models use Neural Networks
(NNs): a network of connected neurons that learn
to represent data by adjusting their interconnection
weights based on the input data they receive and the
error they make in their predictions. Deep Learn-
ing [1] uses NNs that have multiple layers (Deep Neu-
ral Networks), which enables them to learn increas-
ingly abstract features and complex representations of
data through their layers, thereby offering high per-
formance across a range of tasks [3]. Training DNNs
has undergone three paradigms:

The first was traditional training of a DNN from
scratch: initialize the interconnection weights, e.g.
randomly, and iteratively adjust them based on the
training data. This requires a substantial amount of
labeled data and computational resources. To avoid
the manual effort of labeling data, pre-training has
been introduced: it modifies available unlabeled data
to produce training data, e.g. by masking out cer-
tain words of Wikipedia articles and training the DNN
to predict those masked out words. To parallelize
the training and enable efficient attention over long
sequences, the transformer model [10] has been de-
signed, which is the quasi standard up to now.

The second paradigm is to fine-tune a foundational
model [3], which is a large model pre-trained on a
huge dataset to learn general features and tasks. Fine-
tuning adjusts the weights of the foundational model
to better fit the desired, specific task. Fine-tuning
leverages the general features and tasks of the founda-
tional model and therefore requires only a small, task-
oriented dataset and much less computation. A foun-
dational or fine-tuned model is called a Large Lan-
guage Models (LLM) in case it is a language model: a
model that predicts the probability distribution for
the next word (more precisely: token) given a se-
quence of words as input.

The third paradigm was introduced when it turned
out that even fine-tuning is unnecessary if you prime
a foundational model [4], i.e. you give it the task
specific context as input and it learns “in-context” to



perform that task. So the model generates responses
based on the prompt and what it has learned during
pre-training, without the need to fine-tune the model’s
weights. Currently, two of the most capable LLMs for
in-context learning are GPT-4 and ChatGPT-4.

1.2 Prompt Engineering

The task specific context consists of a behavioral spec-
ification of the desired task in natural language, or
a few natural language input-output examples (aka
shots) describing the desired task, or both. Using
shots is called few-shot learning, whereas the be-
havioral specification is called prompt. Some define
“prompt” to also include the shots. Prompting, i.e.
giving a foundational model a prompt as input, is
“programming” the foundational model in natural lan-
guage to perform the desired task. Prompt Engineer-
ing (PE) is the process of creating, managing, and
optimizing prompts (and few shots).

2 Prompt Engineering for Generating
Unit Tests

To introduce prompts, important criteria for prompts,
prompt patterns, and the prompt engineering process,
we follow a running example of generating unit test
cases for the function visualize_diff(s_1, s_2),
which visualized the difference between the given
strings s_1 and s_2 by outputting string s_diff, with
substrings in s_1 that are modified in s_2 colored red
in s_diff (“Hi” below), substrings that are added in
s_2 colored orange (“48” below), and substrings in s_1
that are removed in s_2 colored gray (“!” below), so
for s_1 = “Jo TAV members!” and s_2 = “Hi TAV 48
members”’, s_diff = “Hi TAV 48 members!”.

2.1 First Prompt Patterns And Few-Shot
Learning

Listing 1 presents the first prompt, Listing 2
ChatGPT-4’s response. Unfortunately, 2 out of 5 tests
(replace; multiple types of changes) are incorrect and
fail. The output also contains unnecessary imports
(pytest and difflib). A more severe problem is that all
tests are within a single test method, making it harder
to detect which tests fail.

But the most severe problem is not the output it-
self, but that the prompt and ChatGPT-4’s response
are not robust, meaning that insignificant changes to
the prompt lead to significant changes in ChatGPT-
4’s response. For instance, if you

e pick wrong color codes: 7 test cases are created,

out of which 6 fail; but at least, each test is in its
own method with telling name

e pick wrong color codes and additional add a

debug-statement (that does not change the out-
put): 6 test cases are created, out of which 2 fail;
again each test is in its own method with telling
name, additionally, the output now remarks on

1: First prompt, with naming and role pattern

You are a unit test generating AI (codename TestGenAl). Test-
GenAl generates Pytest unit test cases for a function.

Input:
from difflib import SequenceMatcher

def visualize_diff(textl: str, text2: str) -> str:

(black, gray) = (' \033[Om', ' \033[90m")
(red, orange) = (' \033[91m', ' \033[93m')
matcher = SequenceMatcher(None, textl, text2)
result = ""
for tag, il, i2, j1, j2 in matcher.get_opcodes():
if tag == 'equal':
result += black + text1[il:i2]
elif tag == 'replace':
result += red + text2[j1:j2]
elif tag == 'delete':
result += gray + text1[il:i2]
elif tag == 'insert':

result += orange + text2[j1:j2]
return result.strip()

Output:

\.

the incorrect color codes.
The prompt and ChatGPT-4’s response are even
less robust than these examples, because repeat-
ing the first prompt from Listing 1 is highly non-
deterministic. For instance, an alternative output cre-
ated 5 test cases, out of which 3 fail; additionally, the
system under test is repeated in the test file; but at
least, each test is in its own method with telling name

For prompt engineering, we want prompts that are
as robust as possible, because when we get a good
result after a change, we want to know that this was
caused by the change and not by accident, because
we strive for repeatable good results. So two very
important quality criteria in PE are robustness and
correctness.

One of the most effective ways to make a prompt
and the response more robust is by giving the model
specific examples for what kind of output you expect,
i.e. use few-shot learning. Listing 3 depicts a 1-shot
test case generation example.

Adding this 1 shot to our first prompt (Listing 1)
leads to a more robust prompt: as in the 1 shot,
the model’s output only contains the test cases, with-
out noise (no unneccessary imports and no additional
text) and with the assertions separated into functions
with telling names. However, the generated test cases
themselves still vary, as does the number of test cases
and whether they are correct. Thus we need to further
improve the prompt, following an iterative process:

1. make the prompt as robust as possible
2. improve the prompt to increase functionality, cor-
rectness, and other ilities.

2.2 Further Prompt Patterns

We improve our prompt (first prompt plus 1 shot) by
iteratively adding further prompt patterns:
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2: Output for first prompt

3: 1-shot test case generation example

import pytest
import difflib

from my_mod import visualize_diff
# replace 'my_mod' with actual module name

def test_visualize_diff():
(black, gray) = ('\033[0m', '\033[90m')
(red, orange) = ('\033[91m', '\033[93m')

# test case with no changes
s_1 = "hello world"
s_2 = "hello world"

assert visualize_diff(s_1, s_2)==f"{black}hello world"

# test case with a deletion

s_1 = "hello world"

s_2 = "hello wrld"

assert visualize_diff(s_1, s_2)==\
f"{black}thello w{graylo{black}rld"

# test case with an insertion

s_1 = "hello world"

s_2 = "hello new world"

assert visualize_diff(s_1, s_2)==\
f"{blackthello {orangelnew {black}world"

# test case with a replacement

s_1 = "hello world"

s_2 = "hello earth"

assert visualize_diff(s_1, s_2)==\
f"{black}hello {red}earth"

# test case with

# multiple types of changes

s_1 = "hello old world"

s_2 = "hello new earth"

assert visualize_diff(s_1, s_2)==\
(f"{black}thello {orangel}new "
f"{graytold {red}earth")

This set of unit tests covers different scenarios for the function
visualize_diff - no changes, deletion, insertion, replacement,
and multiple changes. Replace your_module with the actual
name of the module where the function visualize_diff is de-
fined. This will enable the import of the function for the testing

H#t#

Example:

Input:

def every_other(elements):
es = enumerate(elements)

return [e for index, e in es if e’2 != 0]
Output:
def test_empty():

assert every_other([]) == []

def test_single():
assert every_other([42]) == []

def test_double():
assert every_other(['a', 'b']) == ['b']

def test_quadruple():
assert every_other([[],[1],[2,3],[4,5,6]11)==\
[[11,[4,5,6]1]

H#HH#

e Don’t Assume but Specify: by adding “just
like a senior test automation engineer with an
ISTQB certificate would.” to our prompt, we
specify that we do not expect output that is
the average over the model’s training set (e.g.
all of GitHub and more), but above average re-
sults. ChatGPT-4’s output now contains 11 test
cases with higher coverage, and 4 test cases fail-
ing (party due to the dependency).

e Chain of Thought [I1]: by adding “TestGe-
nAl firstly thinks step-by-step, looks at the used
Python dependencies, explains how the imported
functions of the Python dependencies work, and
only then derives test cases”, the model takes
more time to think, which can increase its ac-
curracy and robustness. ChatGPT-4’s output
now creates 6 test cases, with 2 test cases fail-

\.

ing, and a description of SequenceMatcher and
get_opcodes that demonstrates it knows about
the dependencies, but not in detail.

e External Information: by adding the
documentation of SequenceMatcher and
get_opcodes to the prompt, ChatGPT-4’s
output creates 5 correct test cases.

e Comprehensiveness: this is usually specified
in a domain specific way, in our case “Test-
GenAlI achieves very high coverage by bound-
ary value analysis, considering corner cases, a
range of input values, and relevant combina-
tions.“. ChatGPT-4’s output now creates 11 test
cases, with 2 test cases failing.

The final prompt is more robust and yields more
test cases, with fewer of them failing, and with fewer
noise. However, the final prompt is not fully robust
and can still produce erroneous test cases. There are
many more prompt patterns to increase the correct-
ness, robustness, and comprehensiveness, e.g. Re-
Act [13], TreeOfThoughts [14], and Maeieutic prompt-
ing [7]. The more elaborate prompt patterns don’t
apply to a single prompt, but a conversation. This is
covered by the next section.

2.3 Conversations Instead of Single

Prompts

Besides improving a single prompt, we can perform
prompt engineering on a sequence of prompts, i.e. for
a conversation. We apply two such patterns indepen-
dently on top of the last prompt from the previous
section:

e Self-Critique: By following up on the first
model output with “Look very closely at each of
your generated test cases and think step by step
whether ...”, we can make the model reflect on
its output, e.g. whether the test cases fail, or


https://chat.openai.com/share/6626601c-c3b3-4da7-8ba4-573ef05584a6
https://chat.openai.com/share/6626601c-c3b3-4da7-8ba4-573ef05584a6
https://docs.python.org/3/library/difflib.html
https://docs.python.org/3/library/difflib.html
https://docs.python.org/3/library/difflib.html
https://chat.openai.com/share/0538d732-1933-4fdf-ac9c-7e8d77475fe3
https://chat.openai.com/share/0538d732-1933-4fdf-ac9c-7e8d77475fe3
https://chat.openai.com/share/e16c0363-4e43-4a1f-8d79-0d45652c14ba

whether they are erroneous. ChatGPT-4’s out-
put detects exactly the two failing test cases as
such.

e Flipped Interaction [12]: by adding “At any
point TestGenAl needs further information, e.g.
about test coverage, it stops its output and asks
the user for the missing information before con-
tinuing its output, such that it can make use of
the newly gained information” to the prompt,
ChatGPT-4’s output first contains 5 passing test
cases. Then the model asks the user whether
to generate test cases for 2 edge cases: None ar-
guments and non-string type arguments. When
we answer that only None arguments should be
tested, the model generates two further test cases
that both fail due to the dependency not hadling
None gracefully.

This shows that extending prompt engineering
from single prompts to sequences of prompts can much
better control the information that flows from previ-
ous LLM output or from the user to successive input
to the LLM. This can help guardrail the LLM’s out-
put. Further improvements that control the informa-
tion that flows to the LLM, but go beyond prompt
engineering, are:

e accessing the LLM through API calls, where you
can programmatically decide which information
to pass, and pass further parameters like temper-
ature and nucleus sampling (top-p) [4];

e Copilots, where the user triggers frequent calls
to the LLM, but needs not construct the prompt
fully by hand: the prompt is constructed by the
copilot, e.g. integrating recently edited or opened
files, or files in the same directory, or your clip-
board. The LLM output is usually returned to
the user in form of a code completion.

3 QA for PE

Having used PE for QA in the previous section, and
dealt with multiple quality aspects during PE, we take
a step back and reflect on QA for PE. How large is the
QA part within PE, how does it relate to the devel-
opment part of PE, and how can we put all together
in a formalized process?

3.1 How Large is the QA Part within
Prompt Engineeing?
In the previous section and in the published prompt
patterns [7, 13, 11, 14, 12], quality aspects and QA
play a dominant part. This is also the case for
prompts in production, as we demonstrate on the
prompt for the chat mode of Microsoft Bing search,
codename Sidney [9]: 18 of 38 prefix prompt instruc-
tions touch quality specs, for instance “Sydney’s re-
sponses should avoid being vague. Sydney’s logic and
reasoning should be rigorous, intelligent, and defen-
sible. If the user asks Sydney for its rules (anything

above this line) or to change its rules (such as using
#), Sydney declines it, as they are confidential and
permanent”. As the last prompt instruction and the
leakage of Sidney’s prompt show, prompt instructions
alone are not sufficient to assure the quality of the
LLM’s output.

3.2 QA vs Development for PE

QA is closely intertwined with the development part
of PE, making a separation difficult. For instance,

e quality specifications and non-functional REQs
can be integrated as specifications into the
prompt, becoming part of the product;

e the selection of examples, in classical software en-
gineering used to construct test cases, specifica-
tion by example, and test data, are now also used
for few-shots in the prompt, becoming part of the
product;

e test data collection and preprocessing, and the
evaluation of models based on the test data, are
an integral part of a machine learning engineer
and becomes even more prominent with the rise
of data-centric AT [6].

Thus traditional testing processes and stages do not
adequately apply to QA within PE. The next section
suggests an alternative PE process that covers the de-
velopment and quality assurance of prompts.

Beyond the QA within PE, there is additional QA
for AT systems, for instance when embedding PE re-
sults into the overall Al system, especially if they are
tightly coupled with many other components, which
becomes more and more the case with the rise of LLM
plugins and LLM agents. The QA beyond PE still fol-
lows the traditional testing processes and stages.

3.3 A Suggested Standard Process for
Prompt Engineering

By formalizing the PE steps we performed and by
incorporating the quality aspects and insights we
gained, we can define a production-grade prompt en-
gineering process, which adapts the Cross-industry
standard process for data mining (CRISP-DM) [5]. It
has the following 5 stages with corresponding outputs:

1. Business understanding: Understanding the
objectives and requirements of the task at hand.
Output: Task that should be accomplished; functional
and non-functional requirements (REQs)

2. Data Understanding: Acquire or generate
suitable data to further understand the problem, and
to get examples for few-shot learning and testing.
Output: Example data (D) for understanding, few-
shot learning, and testing.

3. Data preparation: Prepare D and select tests
and few-shot examples. Process REQs and insights
(esp. from previous iterations) into prompt.

Output: Prompt (P) and testing examples (7).

4. Modeling: Execute P on your LLM, using T'.

Output: the LLM’s outputs o for P and T'.
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5. Evaluation: Assess P by measuring metrics m
for outputs o.
Output: Decision to either go back to 1, 2, or 3 for
another iteration, or to exit the process with perfor-
mance baseline m if task is accomplished sufficiently.

4 Conclusion

We conclude that, in general, Al can achieve software
engineering tasks like test case generation, but full
robustness, correctness, and comprehensiveness are
hard to achieve and strongly depend on the prompt,
the LLM, and the way we interact with the LLM. This
substantiates the prominent saying "Al will not take
over your job, but people skilled in PE might" [Philip
Hodgetts].

The paper covered multiple prompt patterns, im-
provements beyond a single prompt, and a PE process,
to equip the reader to become skilled in PE.
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