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Abstract

Quality Function Deployment (QFD) as part of the
Design for Six Sigma (DFSS) methodology assists
to design a new product or to redesign an existing
product with respect to a set of potentially changing
customer requirements. The goal of DFSS is that the
novel product meets the stated requirements within
a predefined Six Sigma quality level. If this aim is
missed, sensitivity analyses may help to approach the
aim. This article outlines how and with which means
such analyses can be conducted.

1 Introduction

A prominent DFSS tool is the concept of transfer
functions. For instance, transfer functions identify
(highly) complex relationships between input param-
eters and the output of the product so that the quality
of the product may be predicted, prior to a potentially
cost intensive implementation of a prototype. Related
to QFD, the House of Quality (HoQ) reflects a multi-
dimensional transfer function.

Experience has shown that an initial HoQ does not
provide an optimal or at least an acceptable solution.
In this case the values of the input parameters, i.e.,
the values of the entries of the HoQ matrix, are modi-
fied, where such parameters are of interest which shift
the result of the considered transfer function into the
direction of a (nearly) optimal solution. How and to
which extent each input parameter affects the result of
the actual transfer function is the result of performing
a Global Sensitivity Analysis (GSA), likewise another
DFSS tool.

This article outlines how and by which means such
a GSA can be conducted and what can be concluded
from the result of the GSA.

2 DFSS Transfer Funktions

Transfer functions are of the general form

𝑦 = 𝑓 (𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝑓 (𝒙), (1)

where 𝑥1, 𝑥2, . . . , 𝑥𝑛 are termed the controls und 𝑦 the
response of 𝑓 .

The response 𝑦 is optimal, when 𝑦 is equal to a
predefined constant 𝜏𝑦 , the goal of 𝑓 . If 𝑦 is not opti-
mal, i.e., if the convergence gap |𝑦 − 𝜏𝑦 | > 0, then the
controls 𝑥1, 𝑥2, . . . , 𝑥𝑛 are modified by some strategy
and 𝑦 is re–calculated so that |𝑦 − 𝜏𝑦 | decreases.

In the context of QFD, transfer functions 𝑓 are
represented by an 𝑚 × 𝑛 matrix 𝑨, i.e., 𝒚 = 𝑨(𝒙)
where 𝒚 is a 𝑚–dimensional vector. Fehlmann and
Kranich [2] point out, that solely the entries 𝑎𝑖 𝑗 of
𝑨 can be modified since in classical QFD the con-
trols 𝒙 are calculated by 𝒙 = 𝑨𝑇𝝉𝒚 and after that the
response 𝒚 = 𝑨𝒙 = 𝑨𝑨𝑇𝝉𝒚 , where 𝝉𝒚 is the prioriti-
zation vector of the customer requirements. Clearly,
the response 𝒚 is nearly optimal when the convergence
gap ∥𝒚 − 𝝉𝒚 ∥2 < 𝜀 where 𝜀 > 0 is a given threshold.

3 Global Sensitivity Analysis

The goal of a Global Sensitivity Analysis (GSA) is to
gain an insight, how and to which extent a single con-
trol or a combination of controls affects the response
𝒚 of a transfer funtion 𝑓 . Among all GSA techniques
the variance–based procedures play a prominent role,
see, for instance, Saltelli et al. [3].

3.1 Variance–based Procedures

Considering the controls 𝑥2, 𝑥2, . . . , 𝑥𝑛 in (1) as ran-
dom variables 𝑋1, 𝑋2, . . . , 𝑋𝑛 yields the transfer func-
tion

𝑌 = 𝑓 (𝑋1, 𝑋2, . . . , 𝑋𝑛) = 𝑓 (𝑿). (2)



Statements with respect to variance–based proce-
dures are based on the Law of Total Variance, see,
e.g., Saltelli et al. [3, p. 21]:

𝑉 (𝑌 ) = 𝑉𝑋𝑖
(𝐸𝑿∼𝑖 (𝑌 |𝑋𝑖)) + 𝐸𝑋𝑖

(𝑉𝑿∼𝑖 (𝑌 |𝑋𝑖)), (3)

where 𝑋∼𝑖 denotes all variables 𝑋 𝑗 with 𝑗 ≠ 𝑖. The
term 𝑉𝑋𝑖

(𝐸𝑿∼𝑖 (𝑌 |𝑋𝑖)) reflects the expected reduction
in the variance of 𝑌 which would be achieved when
a variable 𝑋𝑖 is fixed at a specific value, whereas
𝐸𝑋𝑖

(𝑉𝑿∼𝑖 (𝑌 |𝑋𝑖)) is equal to the expected residual
variance with respect to 𝑌 when only the variable
𝑋𝑖 is fixed.

In view of (3), the larger 𝑉𝑋𝑖
(𝐸𝑿∼𝑖 (𝑌 |𝑋𝑖)), the

smaller is 𝐸𝑋𝑖
(𝑉𝑿∼𝑖 (𝑌 |𝑋𝑖)) and vice versa. A large

variance 𝑉𝑋𝑖
(𝐸𝑿∼𝑖 (𝑌 |𝑋𝑖)) means that 𝑋𝑖 affects the

response 𝑌 to a large extent. Hence, this variance is
termed the main effect of 𝑋𝑖 on 𝑌 and is measured by

𝑆𝑖 =
𝑉𝑋𝑖

(𝐸𝑿∼𝑖 (𝑌 |𝑋𝑖))
𝑉 (𝑌 ) , (4)

which is the measure of choice with respect to priori-
tizing of an (control) variable 𝑋𝑖 .

Replacing 𝑋𝑖 in (3) with the variables 𝑿∼𝑖 and vice
versa yields

𝑉 (𝑌 ) = 𝑉𝑿∼𝑖 (𝐸𝑋𝑖
(𝑌 |𝑿∼𝑖))
+ 𝐸𝑿∼𝑖 (𝑉𝑋𝑖

(𝑌 |𝑿∼𝑖)),
(5)

where the term 𝐸𝑿∼𝑖 (𝑉𝑋𝑖
(𝑌 |𝑿∼𝑖)) is equal to the ex-

pected residual variance with respect to 𝑌 when the
variables 𝑋∼𝑖 having unknown true values are fixed.
Therefore this term reflects the total effect 𝑋𝑖 has on
𝑌 and is measured by

𝑆𝑇𝑖 =
𝐸𝑿∼𝑖 (𝑉𝑋𝑖

(𝑌 |𝑿∼𝑖))
𝑉 (𝑌 ) , (6)

which is the measure of choice with respect to fixing
variables 𝑿∼𝑖 .

Properties of 𝑆𝑖 and 𝑆𝑇𝑖 are, e.g., (a) A variable
𝑋𝑖 is important when 𝑆𝑇𝑖 > 0.8; it is important when
0.5 < 𝑆𝑇𝑖 < 0.8, unimportant, when 0.3 < 𝑆𝑇𝑖 < 0.5
and irrelevant when 𝑆𝑇𝑖 < 0.3. (b) If 1 − ∑

𝑖 𝑆𝑖 > 0,
then interactions between variables exist. If 𝑆𝑖 < 𝑆𝑇𝑖
then 𝑋𝑖 interacts with the remaining 𝑿∼𝑖 .

In general, it suffices to calculate estimators for 𝑆𝑖
und 𝑆𝑇𝑖 , see, e.g., Chan, Saltelli, and Tarantola [1].

3.2 The Winding Stairs (WS) Procedure

Chan, Saltelli, and Tarantola [1] describe the Winding
Stairs (WS) procedure as a sampling technique which

generates a sequence of samples of the variable 𝑋𝑖 on
the basis of an inital sample by modifying elements of
the initial sample in a persisting cyclic order defined,
e.g., by arranging component–wise the convergence
gap ∥𝒚 − 𝝉𝒚 ∥2 in descending order, see Section 2.

The WS procedure is started by considering an ini-
tial sample 𝒙 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) of the random vari-
ables 𝑿 = (𝑋1, 𝑋2, . . . , 𝑋𝑛). Subsequent samples 𝒙 𝒋

(2 ≤ 𝑗 ≤ 𝑛) are generated by modifying subsequently
each single component of the prior generated sample
𝒙 𝒋−1. Each time a new sample 𝒙 𝒋 has been determined
the corresponding response 𝑦 = 𝑓 (𝒙 𝒋) is calculated.
The first cycle of the WS procedure is complete when
𝒙𝒏 and 𝑦 = 𝑓 (𝒙𝒏) has been computed. Subsequent
cycles are handled in the same manner until the pre-
defined maximum number 𝑚 of cycles is reached.

In order to calculate estimators for 𝑆𝑖 in (4) and 𝑆𝑇𝑖
in (6) all responses 𝑓 (𝑥𝒌 ) are organized in the 𝑚 × 𝑛

Winding Stairs Matrix (WS matrix):

©«
𝑓 (𝒙1) 𝑓 (𝒙2) · · · 𝑓 (𝒙𝒏)
𝑓 (𝒙𝒏+1) 𝑓 (𝒙𝒏+2) · · · 𝑓 (𝒙2𝒏)

...
...

...
...

𝑓 (𝒙 (𝒎−1)𝒏+1) 𝑓 (𝒙 (𝒎−1)𝒏+2) · · · 𝑓 (𝒙𝒎𝒏)

ª®®®®¬
(7)

Chan, Saltelli, and Tarantola [1] estimate the sensitiv-
ity indices 𝑆𝑖 and 𝑆𝑇𝑖 by using the WS matrix (7).

4 Outlook

This article outlines a sensitivity analysis procedure
for QFD transfer functions. Implementation details
and extensions of the presented method are subject of
a forthcoming article.
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