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Abstract— Machine Learning (ML) based in-
dustrial applications deployed in high variance dy-
namic environments present a new set of chal-
lenges. The performance of such systems is di-
rectly linked to the nature of the data it has been
subjected to. Using the computer vision-based
ML applications in the logistics industry as a case
study, due to their high variance environment and
strict requirements, we try to address the issue of
understanding the data requirements for the suc-
cessful development and deployment of such appli-
cations. We propose a systematic approach to ad-
dress high variance scenarios with limited relevant
data availability, covering both real data collection
and synthetic data generation, highlighting their
requirements and effective utilization methods.

1 Introduction

We aim to address the challenges of labeled data spar-
sity in ML-driven computer vision tasks such as un-
known object detection, segmentation, and pose es-
timation, particularly focusing on the requirements
for training, testing, and deploying ML based vi-
sion tasks. Our main objective is to explore diverse
data generation approaches and their requirements
for the robust deployment and maintenance of such
data driven applications. Defining the data require-
ments in such applications is one of the key challenges
being addressed, as the requirements range from re-
quirements set by laws defining the usage of such
data, to requirements set by the application itself.
To achieve this, we should be able to clearly define
the requirements from top to bottom, starting with

the application and moving on to the model, and data
[12] to be used. Our main focus will be mainly but not
exclusively directed towards the data requirements of
such tasks, and the state of the art approaches to ad-
dress these issues, especially in sparse data environ-
ments. This includes the requirements for the differ-
ent data generation methods for vision tasks along
with the requirements for their generated data start-
ing from the number of samples, their quality, and
variance all the way down to the specifics such as the
object shapes, sizes, colors, quantities, backgrounds,
and arrangements in the generated scenes. We dis-
cuss the input data that these methods should handle
and the tasks to be performed reliably, such as aug-
menting given scenes, creating new objects to fill data
gaps, and generating novel relevant data in cases with
data restrictions [1] or sparse environments. This
approach, contributes to bridging the gap in the re-
quirements necessary for synthetic data generation
for enhancing the performance ML models in real-
world scenarios.

2 Background and Related Work

Machine Learning(ML) systems in the industry are
still not understood well [5], this often results unre-
alistic requirements and expectations from the cus-
tomers side. As these approaches are mostly unique
due to their data-driven nature, they require new
types of requirements that consider the performance
on a given task [5]. As discussed in [1] it is important
to define the requirements inside the context of the
given task, followed up by some quality metrics and
performance monitoring specific to the task itself.



A. Requirements Engineering for ML from
an Industrial Perspective

The automation industry has always been leaning
towards high performance reliable solutions that re-
quire as little intervention and maintenance as possi-
ble to keep on running. This results in a stable pro-
cess with minimal costs and reduced downtime. With
the recent advancements in the field of ML, it is now
possible to automate more repetitive processes with a
non-deterministic decision pattern requiring a human
to perform the task. As humans have a lifetime of
experience at their disposal and a strong contextual
understanding of the task, they can perform tasks in
a reliable manner without defining requirements on
a very detailed level. As an example, a human per-
forming a commissioning task in the logistic indus-
try, gets a task to pick a certain quantity of item A
from a place X and place it into Y. If the information
is correct the human should not have any problem
performing such a task, and the time required to do
it is also more or less known. But giving the same
task to a Robot using ML will raise an large number
of questions that have previously been considered as
”obvious” to a human. By first roughly answering
these questions one can draw the outline of the re-
quirements the system has to fulfill to perform this
task successfully, for example:

1. Accurate and reliable item detection and local-
ization. The ML algorithm should be able to
differentiate between the desired objects and all
other objects belonging to the environment.

2. Finding stable and reliable grasp points on the
required items that lead to a successful picking
process without damaging the item.

3. From a container with several items of the same
type, decide which one is the easiest to pick first
to decide on the order in which items are going
to be picked.

4. Plan and perform the desired motion.

5. Choose the best placement pose and location as
this can be described as an optimization prob-
lem where the actor performing the action aims

to achieve a compact and stable item placement
while making sure that items will not get dam-
aged during the transportation process.

Beside the mentioned high level requirements there
are the reliability and process intervention require-
ments, as the deployed model should be able to gen-
eralize on such a wide range of diverse unseen items
in a warehouse as possible without the need of con-
tinuously turning to the developers for updating the
models every time new products and packaging are
introduced, and as little as possible human interven-
tion in case of emerging errors.

B. Challenges in Data Requirements for ML-
Driven Logistics

As an example for demonstrating the data require-
ments issue, we use ML driven Computer Vision al-
gorithms in the logistic industry as a case study. In
this example the ML algorithm tries to perform the
commissioning task mentioned above in a warehouse
with thousands of diverse products. In order to bet-
ter understand the requirements of such a task, we
start by demonstrating the current challenges facing
pre-trained ML approaches in the field of Computer
Vision.

1. Pre-trained ML models in industrial applications
demonstrate a significant decrease in perfor-
mance when faced with novel data when trained
inadequately.

2. Constructing large labeled real data-sets is a
very time consuming and costly process.

3. Definition of data requirements like data quality,
quantity, diversity, statistical balance, and data
collection constraints.

4. Using synthetic data requires a definition of the
ratio of the mix between real and synthetic data,
along with additional quality metrics beside the
ones for real data in order to close the Domain
Gap [6] introduced by using simulated data.



3 Data Requirements for ML-Driven
Industrial Applications

To address the challenges mentioned in Section 2, the
following has to be considered:

A. Defining Data Requirements

Defining data requirements for ML-driven industrial
applications is a critical process, focusing on the pre-
cise determination of data criteria. To establish and
articulate these data criteria, several key considera-
tions come into play.

Firstly, in supervised learning, 'necessary labels’ are
important for effective model training, making it es-
sential to specify and define these labels accurately.
Moreover, the determination of the required number
of samples depends on the application’s scope. The
broader the range of scenarios and variances that the
algorithm must handle, the more extensive the data-
set needs to be, and a larger model with more pa-
rameters will be needed.

For industrial applications in computer vision for
object manipulation, high level data variance arises
from scene views, colors, lighting conditions, back-
grounds, and environments. This variation must be
embedded in the data, even encompassing extreme
cases, to ensure the model’s robustness. Moreover, a
balanced distribution of data across various scenar-
ios is essential to prevent bias. Within a single scene,
where accurate object detection is the goal, the data-
set should further introduce variance through varia-
tions in object shapes, sizes, colors, and placements.
As aresult of these requirements, along with the need
to empirically control the attributes of the data-set,
combined with the financial, temporal, and practical
constraints associated with real data collection, syn-
thetic data is often considered as the main source of
labeled training data. Therefore, understanding the
requirements for generating and using synthetic data
is essential.

Due to our limited ability to accurately simulate real
data, a domain gap [6] is introduced when using syn-
thetically generated data. This means that algo-
rithms trained exclusively with synthetic data might
face difficulties generalizing in real life scenarios. In

order to balance this, it is required to have a limited
availability of real data to be used in combination
with the synthetic data.

B. Synthetic Training Data Generation

To be able to further define the requirements for syn-
thetic data generation, we provide a short overview of
the methods available in the context of Computer Vi-
sion along with a promising novel approach currently
being researched.

e High fidelity simulations using 3D object mod-
els: Using high fidelity simulators [2] with CAD
models or the 3D models of real scanned ob-
jects [3, 11] provides representative and realis-
tic data for training vision models, making the
generated synthetic data more applicable to real-
world scenarios.

e Generative data augmentation: Given a limited
amount of real data, Image-to-image data aug-
mentation [1,9, 10,13, 15] could be utilized to
expand the data-set mitigating the costs of ad-
ditional data collection and the same time gen-
erating data very similar to real data reducing
the domain gap. Additionally, advanced data
augmentation methods can be applied for influ-
encing the data generation process using text
prompts to target specific data patches [4,8,9].

e Generative labeled data generation: unlabeled
data generation using generative models has
been around for some time, however so far re-
searchers are investigating the best usage for
such models to obtain novel application relevant
labeled data [14].

C. Requirements of the Training Data

Given the methods mentioned in B, our focus is on
the requirements of the data-set itself, as a result we
define two sets of requirements, the first focuses on
the smaller real data-set collected to serve as a base
for the larger synthetic data-set, where the second
focuses on the data generated by one of the above
mentioned methods given a limited sample of real



data. The following requirements serve as addition
to the requirements mentioned in section A.
Requirements of the real/ initial data-set:

e The data should cover as large incremental varia-
tion as possible stretching between the extremes
in order to be utilized later to cover the gaps
between the different cases.

e The data should be statistically balanced, mean-
ing different scenarios should be equally repre-
sented in the data-set without a bias as this
would transfer to the generated data and then
to the model.

e Part of the data should be reserved to be utilized
exclusively in the model testing process.

Requirements of the synthetic/ generated data-set:

e Should perform data augmentation on the input
initial data while preserving the quality of the
data.

e Accurate data labels/ annotations should be
generated along with the data itself.

e The generated data should be controllable and
statistically analysed to identify biases.

e The generated data should cover a much wider
range of variation than the real data in order to
compensate for the data sparsity.

e The generated data should preserve some as-
pects of the input data but should introduce
enough novelty to make it possible for the model
to learn new information. For example a scene
with an apple is augmented to contain more ap-
ples, or two scenes with different objects are used
to generate a scene with both of them or a merg-
ing of the attributes of the scenes to produce new
objects.

e Generating a ratio of 9:1 of synthetic to real
data, as the mix of 10% real to 90% synthetic
data is commonly used in transfer learning tasks
in the field of learning based Computer Vision
[7].

4 Conclusion

In conclusion, this work mainly addresses the chal-
lenge of defining data requirements in the context of
industrial ML for computer vision. The establish-
ment of the data requirements is necessary to suc-
cessful ML model deployment in real-world industrial
applications. We focus on the unique demands of
defining the data requirements, particularly in sce-
narios where collecting real labeled data is impracti-
cal. We also provide insights into various data gen-
eration methods in computer vision, such as high-
fidelity simulations and generative data augmenta-
tion and generation, to assist practitioners in their
method selection.

Furthermore, we’ve outlined the requirements for
both real and synthetic data, including factors like
diversity, balance, data augmentation, accurate la-
beling, novelty introduction, and bias control. These
requirements are essential in ensuring the efficacy and
reliability of ML models in real-world industrial ap-
plications.

Essentially, this research offers a thorough insight
into the core challenge of outlining data requirements
in industrial machine learning-driven computer vi-
sion. The aim is to assist practitioners in method-
ically setting these requirements, thereby boosting
the effectiveness of machine learning applications in
industrial settings and refining their overall perfor-
mance and efficiency.
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