
Performance comparison of TwinCAT ADS for Python and Java∗

Alexander Weber, Holger Eichelberger
{weber, eichelberger}@sse.uni-hildesheim.de
SSE, University of Hildesheim, Hildesheim

Svenja Wienrich, Per Schreiber
{reimer, schreiber}@ifw.uni-hannover.de
IFW, University of Hannover, Hannover

Abstract

Real-time and in-process measurements are impor-
tant in the manufacturing domain, e.g., for real-time
process monitoring. For performance reasons, such
data is often processed in virtualized environments
on edge devices, as e.g., provided by the company
Beckhoff. For exploring modern AI methods, inte-
gration with high-level languages such as Python or
even with Industry 4.0 platforms for advanced data
flows is needed.

In this paper, we analyze the read/write perfor-
mance of a Beckhoff device integrated via Python or
Java. For our experiments, we use a simulation on a
PC as well as a networked setup with a Beckhoff de-
vice. We show that the Java-based solution is faster
than the Python one by 2-3 times. We also show that
small arrays can be read as fast as a single value, that
there is no difference between operations for small or
big data types and that there is no difference between
reading and writing data.

1 Introduction

In-process measurements are important for analyzing
production problems in manufacturing and as a basis
for adaptive production control using Artificial Intel-
ligence (AI) methods. Production machines such as
those for milling or welding offer high-speed real-time
access to process data such as the spindle current or
torque. Accessing these data streams, analyzing them
with easy-to-develop AI methods in higher-level pro-
gramming languages and controlling or optimizing the
underlying machine operations are recent challenges.

A particular trend is to run AI methods on edge
devices, e.g., on Phoenix Contact [3] or Beckhoff de-
vices1. Moreover, collecting and processing data in a
distributed fashion in an Industry 4.0 software plat-
form is important in manufacturing. In the IIP-
Ecosphere project2 we work on a novel, AI-integrated
platform [3] integrating Java and Python services. To
allow for interoperability with Industry 4.0 devices,
various connectors based on standardized or propri-
etary protocols must be provided by such a platform.

∗IIP-Ecosphere is partially supported by the German Fed-
eral Ministry of Economic Affairs and Climate Action (BMWK)
under grants 01MK20006A and 01MK20006D.

1https://www.beckhoff.com/de-de/
2https://www.iip-ecosphere.de/

One frequently used protocol for real-time data ac-
cess in factories is Beckhoff TwinCAT ADS (Automa-
tion Device Specification). TwinCAT is also the name
of the programming environment for Beckhoff pro-
grammable logic controllers (PLC). To provide access
to ADS data, we aim for a specialized platform con-
nector. Thus, our research question is which perfor-
mance can be achieved for ADS real-time streams in
high-level programming languages such as Python or
Java. We aim for a sampling rate of 1-20 kHz depend-
ing on the task at hands, for a platform integration
the machine pace of 8 ms is sufficient [1].

In this paper, we analyze the read/write perfor-
mance for different ADS data types and compare the
performance of the Python pyADS library and our Java
library. An integration of the native ADS library and
the conversion of ADS data types to a higher-level
language may cause overheads. We show that our
Java integration based on JNA (Java Native Access)3

is faster than an existing Python library, that read
/ write operations for all ADS data types operate
per approach at a similar performance and that both
approaches significantly drop in performance when
utilised through a network.

Liang et al. built a system for a digital twin robot
where ADS is one of the communication protocols for
transferring data between the physical robot and its
virtual counterpart [2]. The authors created a direct
connection between the ROS (Robot Operating Sys-
tem) and the TwinCAT PLC and measured the av-
erage transmission speed for 16 data points at 9.45
ms through Ethernet. Further, Galeas et al. used in
[4] ADS to control a telescope through an ADS-based
Ethernet connection between a Linux and a Twin-
CAT PLC. The authors used parallel connections for
writing and receiving data and achieved an average
response time of 1 ms in an experiment with over
50,000 data points. However, no details on the im-
plementation language were given. Both papers focus
on the usage of ADS as a part of a system and evalu-
ate its transmission times, but the authors do neither
consider different types of ADS variables nor different
implementation languages. In our work, we examine
the performance of two different programming lan-
guage integrations as well as access to ADS variables
of different types.

3https://github.com/java-native-access/jna

https://www.beckhoff.com/de-de/
https://www.iip-ecosphere.de/
https://github.com/java-native-access/jna


In the following, we firstly discuss in Section 2 our
approaches to integrate ADS into Java and Python.
In Section 3, we detail the setup of a performance
experiment on accessing data with a simulated and a
real Beckhoff device and evaluate the results. We end
with a short conclusion and some directions for future
work in Section 4.

2 Approach

For integrating a real-time data access approach into
a software platform, it is important to understand
tradeoffs between different forms of integration, in our
case, in particular for Python and Java.

For Python we rely on the existing pyADS library4.
However, for copyright reasons, pyADS does not ship
with the native (Windows) TwinCAT ADS library,
which can be obtained from an installation of the
Beckhoff TwinCAT ADS development environment.
For Java, so far no encompassing and comparable li-
brary exists. For an initial evaluation of performance
tradeoffs, we implemented a simple Java library in
the style of pyADS and execute native TwinCAT func-
tions through JNA. JNA automagically binds a native
library against the Java Native Interface (JNI) only
based on Java interfaces of the native library. In con-
trast, JNI is known to operate at better performance
while requiring low-level C programming.

Both libraries access ADS variables through their
name and type as defined in the underlying PLC pro-
gram. In more details, the access to an ADS variable
consists of two library calls, namely getIndexOffset

to resolve the variable name to a memory offset and
the second (e.g., AdsSyncReadWriteReqEx2) to read
/ write data to a given memory offset. As ADS de-
fines various data types ranging from Boolean, signed
/ unsigned Integers (LWord, DWord, Word or SWord,
i.e., 64, 32, 16 and 8 bit Integers, respectively), Dou-
bles, Strings, to composite types and fixed-length ar-
rays of these types, both libraries provide specific read
/ write operations per type.

In contrast to Python, in Java a type and a value
conversion is required. However, some ADS types ex-
ceed the bit length of the corresponding Java types
and, thus, require a conversion to the next larger /
smaller type when reading from or writing to ADS.
For example, an unsigned ADS variable of SInt (8
bit) is stored in a signed Java short variable of 16 bit
length. Values of the ADS types Real or LReal can
directly be stored in the corresponding Java floating
point data types float or double, respectively. How-
ever, for unsigned 64 bit ADS integers we have to
resort to objects of the Java BigInteger class. When
writing to ADS variables of unsigned types, we cast
the bigger (signed) Java value down to the next fitting
unsigned data type with the correct number of bits.
For more complex data types, we employ a visitor pat-
tern which linearly maps, e.g., an array or a composite

4https://pypi.org/project/pyads/

type from / to memory through basic types operations
at respective memory offsets. Moreover, we allow for
caching already resolved ADS memory offsets.

3 Evaluation

We are particularly interested in the read and write
performance (response times) from and to ADS using
the approaches described in Section 2. The main goal
is to determine whether the approaches can fulfill the
aforementioned speed requirements of 1 kHz upwards
(e.g., for sampling the 3 axis positions of a spindle)
or at least the 8 ms machine pace. Further we are
interested whether we can identify differences based
on the used data type, especially given the required
casts in Java, or whether arrays, e.g., for the 3 axis po-
sitions, have any advantage over accessing individual
values. Lastly, differences may occur when we access
ADS locally on the same device or via network.

The experiment setup involves a usual Laptop (In-
tel Core i7-8665U with 4 cores and 32GB of RAM) as
well as a Beckhoff IPC C6930 (Intel Core i7-7700, 4
CPU cores with one core isolated for real-time tasks,
32 GB RAM, Windows 10 IoT Enterprise) PLC /
edge device, both connected via a Gigabit managed
Ethernet switch. As the PLC and the Beckhoff Twin-
CAT 3 programming environment is based on Win-
dows as operating system, we also equipped the Lap-
top with Windows 10 and the original native Twin-
CAT TcAdsDll library version 2.11.0.41. The Twin-
CAT project for programming / simulating the PLC
defines 14 variables of basic data types and 14 of corre-
sponding array types, each array of length 3 (inspired
by the three spindle axis case). Moreover, we are us-
ing Java 13+33 and Python (Cython) 3.8.10 on the
Laptop, versions that are compliant with the require-
ments of the IIP-Ecosphere platform.

The experimental subject is a simple Java / Python
program utilizing the respective approach from Sec-
tion 2. Both programs access the same ADS variables
in the same sequence, for experimental purposes in
terms of measurement loops. As experimental proce-
dure, we run 10 iterations of 1,500 access operations.
A single iteration performs either read or write op-
erations for one of the 14 base data types or their
corresponding array type, respectively. We record the
sum of the ADS calls per iteration allowing to easily
discard potential warm-up iterations.

In a pre-experiment, we analyzed whether the JVM
requires some warm up, e.g., for Just-in-Time com-
pilation. Thereby, we did not find any indication
for performance differences between the (initial) itera-
tions allowing us to consider all collected data points.

Tables 1 and 2 illustrate selected results from the
experiment5. In more details, we selected the results
for the largest (64 bit) and the smallest (8 bit) data

5All experimental material is published on Zenodo (https:
//zenodo.org/record/8421817) and the Java ADS library as
Open Source.

https://pypi.org/project/pyads/
https://zenodo.org/record/8421817
https://zenodo.org/record/8421817


Table 1: Results for 1,500 local/simulated accesses [s]

Python Java

ADS Data Type read write read write
LReal 6.116 5.734 1.949 1.923
ULInt 5.781 5.676 1.994 1.886
LInt 5.986 6.036 1.877 1.907
SInt 5.701 5.881 1.843 1.923
Byte 5.811 5.940 1.863 1.958

LReal Array 6.010 5.950 1.979 1.988
ULInt Array 5.775 5.952 2.103 1.931
LInt Array 6.281 5.797 2.009 2.023
SInt Array 5.780 6.034 2.047 1.964
Byte Array 5.795 5.953 2.010 2.080

types. We do not display the complete data for all
measured data types here as the left out data types
have same access times, i.e., there seems to be no cor-
relation between the data type and response times.
When comparing the average time for read and write
operations for all data types we found a small de-
viation 0.01% in either direction. In general, array
accesses seem to be a bit slower than accesses for in-
dividual values, but only by 0.03%. Further, a com-
parison of the Java operations for ULInt, where we
apply conversion to BigInteger, to the other 64 bit
or even 8 bit data types, does not show any overhead.
We also tracked memory usage and CPU usage dur-
ing the experiment using PerfMon and, besides some
singular spikes, did not identify relevant outliers or
deviations.

Table 1 shows that accessing ADS values through
Python on the same device is about three times slower
than the Java approach. In other words, in Java a sin-
gle read or write operation can be executed in 1.323
ms or 1.301 ms, respectively, while Python requires
in average 3.9 ms for either operation. Thus, in a lo-
cal setting, data access at the machine pace of 8 ms
is possible for Java and Python. However, already a
sampling rate of 1 kHz is problematic as at maximum
the response times are up to 10% higher than the av-
erage while the average itself is 30% above our goal.
If related values as spindle axes positions are stored
in an array and accessed through a single operation,
a (virtual) sampling rate of up to 3 kHz is possible.

Table 2 shows the results for network accesses to
the Beckhoff PLC. Here, both approaches need be-
tween 2.5 and 3 times longer, while again there are no
significant differences among reading or writing values
of different data types. Also the machine pace of 8 ms
is achievable, but for Python only by utilising arrays
to read multiple data points at once.

Besides limitations of an initial experiment not
paying attention to all disturbances on a Windows
system, we did not perform experiments on Linux to
use the original Beckhoff ADS library.

Table 2: Results for 1,500 PLC accesses [s]

Python Java

ADS Data Type read write read write
LReal 14.478 14.275 5.370 5.331
ULInt 14.447 14,572 5.329 5.486
LInt 14.471 14.598 5.412 5.415
SInt 14.357 14.470 5.434 5,384
Byte 14.486 14.451 5.436 5.484

LReal Array 14.437 14.600 5.507 5.420
ULInt Array 14.634 14.252 5.577 5.368
LInt Array 14.439 14.419 5.423 5.418
SInt Array 14.490 14.584 5.418 5.505
Byte Array 14.464 14,500 5.476 5.401

4 Conclusions and Future Work

Access to real-time information in production pro-
cesses is important, but also performance critical. Due
to our context, we performed an experiment with Java
and Python for Beckhoff TwinCAT ADS. This experi-
ment provides initial insights for higher-level program-
ming languages and surprisingly shows that Java out-
performs Python. In particular on Java, the requested
8 ms machine pace as well as sampling frequencies
close to 1 kHz for individual values and slightly above
2 kHz for arrays of length 3 can be achieved. In
the future, we plan to further investigate the perfor-
mance differences between Java and Python, to opti-
mize the Java implementation, e.g., to directly inte-
grate the TwinCAT library through JNI or to apply
the GraalVM6, which compiles Java and Python into
native code.

References

[1] H. Eichelberger, H. Stichweh, and C. Sauer.
“Requirements for an AI-enabled Industry 4.0
Platform – Integrating Industrial and Scientific
Views”. In: Intl. Conference on Advances and
Trends in Software Engineering. 2022, pp. 7–14.

[2] C.-J. Liang et al. “Real-time state synchro-
nization between physical construction robots
and process-level digital twins”. In: Construction
Robotics 6.1 (2022), pp. 57–73.

[3] H. Eichelberger, G. Palmer, and C. Niederee.
“Developing an AI-enabled Industry 4.0 platform
- Performance experiences on deploying AI onto
an industrial edge device”. In: Softwaretechnik-
Trends 43.1 (Feb. 2023), pp. 35–37.

[4] P. Galeas et al. “EtherCAT as an alternative
for the next generation real-time control sys-
tem for telescopes”. In: Journal of Astronomical
Telescopes, Instruments, and Systems 9.1 (2023),
pp. 017001–017001.

6https://www.graalvm.org/

https://www.graalvm.org/

	Introduction
	Approach
	Evaluation
	Conclusions and Future Work

