
Recovering Missing Dependencies in Java Models

Martin Armbruster
martin.armbruster@kit.edu

Manar Mazkatli
manar.mazkatli@kit.edu

Anne Koziolek
koziolek@kit.edu

Karlsruhe Institute of Technology (KIT), Am Fasanengarten 5, 76131 Karlsruhe, Germany

Abstract

Different approaches use models of source code to ex-
tract performance models from the code which allow
performance predictions and the exploration of de-
sign alternatives. The extended Java Model Parser
and Printer provides a modeling environment for Java
code. It defines a metamodel and contains a parser
and printer including three variants to resolve refer-
ences between different Java models. These variants
assume that the complete code with all dependencies
is available or missing elements are not accessed.

In this paper, a trivial recovery strategy is intro-
duced. It is able to recover references which cannot
be resolved. Additionally, the performance and model
storage of the reference resolution’s variants are com-
pared with and without the trivial recovery. The re-
sults indicate that the trivial recovery reduces the exe-
cution time and required space for storing the models.
In the future, further recovery strategies can be imple-
mented to allow a balance between performance and
model accuracy.

1 Introduction

Architecture-level performance models allow perfor-
mance predictions to, for example, explore design al-
ternatives. There are different approaches to extract
such performance models from source code using mod-
els of the code as input (e.g., the Continuous Inte-
gration of architectural Performance Models approach
[7]). Thus, they need a component which at least de-
fines a metamodel for the targeted programming lan-
guage and is able to parse the source code to create
a model. Depending on the use case, these models
should be valid (i.e., conforming to the metamodel)
and accurate (i.e., they represent the original code
one-to-one). As code has external dependencies, the
dependencies are also part of the code models and af-
fect the validity and accuracy. However, they can be
considered less relevant compared to the actual source
code if the focus lies only on the code as in [7]. More-
over, in [7], source code is continuously parsed so that
it requires a fast parsing.

The Java Model Parser and Printer (JaMoPP) and
the extended JaMoPP enable the modeling of Java
code (as outlined in Section 2). Currently, the ex-
tended JaMoPP assumes that the full source code and

all dependencies are available. Otherwise, the mod-
els are incomplete and invalid. Therefore, this paper
contributes a trivial recovery strategy (in Section 3)
to obtain valid and less accurate models by creating
model elements for missing dependencies. Afterwards
(in Section 4), its performance compared to no recov-
ery is investigated. These results indicate an improve-
ment in the performance. Finally, the paper concludes
with future work (in Section 5) in which advanced
strategies will be explored to find a balance between
performance and accuracy.

2 Foundations

This section introduces JaMoPP and its extension.

2.1 The Java Model Parser and Printer

JaMoPP provides a modeling environment for Java
source code based on the Eclipse Modeling Framework
(EMF) [1]. Thus, it contains a metamodel which sup-
ports the syntax of Java 6 [6]) and an automatically
generated parser for a code-to-model conversion and
printer for a model-to-code conversion [1].

To connect the references between different Java
models introduced by, e.g., imports, JaMoPP con-
tains a Java-specific reference resolution [1]. During
the parsing, a temporary proxy object is created for
every reference which is resolved when it is accessed
(i.e., the proxy object is replaced with the actual and
correct model element) [2, 5]. If the reference points
to an element for which the corresponding file was not
loaded before, JaMoPP parses the file on demand [1].

2.2 The extended JaMoPP

Because JaMoPP is limited to Java 6 and newer Java
versions are available, the extended JaMoPP1 is in-
dependently developed to enhance JaMoPP with the
features of new Java versions [6]. Currently, it sup-
ports the language features of Java 7-15 including
lambda expressions, modules, and switch expressions.
These new features in the metamodel are comple-
mented by a new printer and parser implementation.

In the case of the parser, the extended JaMoPP
utilizes the Eclipse Java Development Tools (JDT)
Core to parse Java code into abstract syntax trees
(AST) and to convert the ASTs into Java models.

1https://github.com/MDSD-Tools/

TheExtendedJavaModelParserAndPrinter

https://github.com/MDSD-Tools/TheExtendedJavaModelParserAndPrinter
https://github.com/MDSD-Tools/TheExtendedJavaModelParserAndPrinter


Similar to the original JaMoPP version, the ex-
tended JaMoPP provides three variants for the refer-
ence resolution [6]. In the first variant, all references
are directly resolved and set during parsing without
generating proxy objects. Thus, it relies on the JDT
bindings which provide connections between different
AST elements2. In contrast, the second variant builds
upon the original JaMoPP’s reference resolution ex-
tending it to support the new Java features [6]. At
last, the third variant combines the first and second
one by still creating proxy objects for references. How-
ever, during parsing, the proxy objects are partly re-
solved with the help of the bindings and depending
on the parser options. After the parsing, remaining
proxy objects are resolved with the second variant.

3 A Recovery Strategy

A comparison of the reference resolution’s three vari-
ants reveals that they have different assumptions
about the code and its dependencies [6]. While the
first variant assumes that the complete code and all
dependencies are available, the second and third vari-
ant do not require such a completeness when refer-
ences to missing code or dependencies are not ac-
cessed. As a consequence, if the assumption for the
first variant does not hold or a reference to missing
code or dependencies is accessed (i.e., the correspond-
ing proxy object cannot be resolved), the resulting
models are incomplete and invalid.

In order to obtain valid models focusing on the sec-
ond and third variant as initial step, a trivial recov-
ery strategy (introduced in version 6.0.0 of extended
JaMoPP) is able to replace proxy objects with actual
model elements. The strategy takes a proxy object,
creates a new model element with the same type, en-
riches the new element with required attributes, and
replaces the proxy object with the new element. In
every step, no context information is considered.

The code example in Listing 1 consists of a class B
as part of the dependencies and class A which repre-
sents a part of the source code and calls the method c

in class B. During parsing, the dependency with class
B is not available so that the method call to c can-
not be resolved. Figure 1 shows a simplified model of
class A before and after executing the recovery. Be-
fore, it has a proxy object for the call to c. After-
wards, the proxy object is replaced with a non-proxy
model element. Additionally, the typeReference of
the created method element representing the return
type of the method is set to void because the context
of the method call is ignored. As every method must
be contained within a class, the trivial recovery cre-
ates the artificial class SyntheticClass which acts as
a container for every recovered method and field and
adds the created element for c to this artificial class.

Although the trivial recovery allows to obtain valid

2See https://github.com/eclipse-jdt/eclipse.jdt.

core/tree/de66fd3d3a56b95e1a62cc578aeb46a6b45a254d

1 // Part of source code.

2 class A {

3 void d() {

4 B b = new B();

5 int i = b.c() + 5; } }

6 // Part of dependency.

7 class B {

8 int c() {} }

Listing 1: Code example with source code and
dependency code.

:Class

name = ”A”

:ClassMethod

name = ”d”

:Void :MethodCall

:ClassMethod

isProxy = true
name = ”c”

:Class

name=”SyntheticClass”

:ClassMethod

name=”c”

:Void

typeReference typeReference

replaces

Figure 1: Simplified Java model for the code example.
The orange elements replace the green ones during the
recovery.

models, they can be inaccurate. Looking back at List-
ing 1, the recovered method element for c is contained
in an artificial class instead of the class element for
B which is also recovered for the type in the variable
declaration of b. Therefore, advanced recovery strate-
gies are proposed that aim to provide more accurate
models by analyzing the context of the proxy objects
[6]. In the example, for recovering the method c, they
would consider the type of the variable b and would
add the recovered method element to this type.

4 Performance Evaluation

Aside from the goal to provide valid models, another
goal of the trivial recovery strategy is an improvement
in performance and model storage as previous initial
measurements indicate high execution times without
a recovery [6]. As a result, this evaluation tries to
answer the following question: how does the recovery
improve the performance of the reference resolution
and model storage compared to no recovery?

Because the recovery currently targets the second
and third variant, the first variant is not considered.
Regarding the second and third variant, three config-
urations are selected: the plain second variant (SV ),

https://github.com/eclipse-jdt/eclipse.jdt.core/tree/de66fd3d3a56b95e1a62cc578aeb46a6b45a254d
https://github.com/eclipse-jdt/eclipse.jdt.core/tree/de66fd3d3a56b95e1a62cc578aeb46a6b45a254d


With Recovery Without Recovery
SV 78.1 s (std. 4.4 s) > 1 hour
OL 198.1 s (std. 10.7 s) > 1 hour
FR does not apply 216.2 s (std. 12.3 s)

Table 1: Average execution times with standard de-
viation and different configurations.

Source Code Only / Total
SV with #Files 160 / 934
recovery Size 18.0 MiB / 305.6 MiB
OL with #Files 160 / 1203
recovery Size 13.8 MiB / 19.7 MiB

FR
#Files 160 / 3957
Size 13.8 MiB / 101.1 MiB

Table 2: Results of calculating the required storage to
save models from different configurations.

the third variant in which only the bindings of the
source code models are resolved (leading to the reso-
lution of direct references into the dependencies called
one level configuration, OL), and the third variant in
which all occurring bindings and remaining proxy ob-
jects are resolved as part of the parsing process (full
resolution, FR).

In every configuration, the parser gets the full
source code of the TeaStore in version 1.4.0 as in-
put. TeaStore is a web-based store for tea and related
products designed for tests and benchmarks [4]. Dur-
ing the evaluation, the following execution times are
measured 100 times with a timeout of 1 hour to cal-
culate the average and standard deviation3: the total
parsing time including resolutions and the recovery if
it is executed. In the case of FR, no recovery needs
to be performed. For SV and OL with recovery, the
proxy objects within the source code models are re-
solved. Afterwards, the trivial recovery is executed.

To measure the model storage, all models of each
configuration are output in the XML Metadata In-
terchange (XMI) format [3], and the total number of
files and their size as well as the number of source
code models and their size are counted.

Table 1 displays the execution times for all con-
figurations. OL and SV without recovery exceed the
timeout. While FR requires 216.2 s, it is outperformed
by OL and SV where SV in turn outperforms OL. As
shown in Table 2, all configurations provide the same
number of models for the source code (160). SV re-
quires 4.2 MiB more storage for these models. In total,
SV generates the smallest file number with 934 files
while FR creates 3957 files. However, SV requires the
most storage with 305.6 MiB. In contrast, OL only
requires 19.7 MiB.

As expected, the recovery speeds up the process in
SV and OL to obtain valid models. It is faster than
FR, too. Nevertheless, the models of FR are valid

3Computer: Intel Core i5-7200U, 8GB RAM, Windows 10.

and accurate leading to the difference in the number
of files and storage between OL and FR. OL contains
only a subset of the accurate models of FR. Remaining
references point to recovered elements decreasing the
required storage. When SV resolves the proxy objects
in the source code, it loads additional files including
statements which are not present in the JDT bind-
ings. As a result, it increases the model size. At the
same time, it seems that this additional file loading
reduces the number of total files compared to OL and
FR. All in all, the trivial recovery can improve the
performance and model storage.

5 Conclusion and Future Work

In this paper, the trivial recovery strategy for the ex-
tended JaMoPP was introduced. It provides model el-
ements for proxy objects in the reference resolution’s
second and third variant by creating new valid ele-
ments with the same type as the proxy object. As
a consequence, users can obtain valid models with
improved performance and model storage. In future
work, the trivial recovery can be compared to pro-
posed advanced recovery strategies [6] potentially of-
fering a balance between performance, model storage,
and model accuracy. Furthermore, the proposed re-
covery strategies can be applied to the extraction of
architecture-level performance models and different
code sizes in order to investigate the generalizability,
applicability, and scalability.

References

[1] F. Heidenreich et al. JaMoPP: The Java Model
Parser and Printer. Tech. rep. 2009.

[2] emftext USER GUIDE. Accessed: 26.07.2023.
Sept. 27, 2012.

[3] Object Management Group, Inc. XML Metadata
Interchange (XMI) Specification - Version 2.5.1.
June 7, 2015.

[4] J. von Kistowski et al. “TeaStore: A Micro-
Service Reference Application for Benchmark-
ing, Modeling and Resource Management Re-
search”. In: Proceedings of the 26th IEEE Inter-
national Symposium on the Modelling, Analysis,
and Simulation of Computer and Telecommuni-
cation Systems. MASCOTS ’18. Milwaukee, WI,
USA, Sept. 2018.

[5] IBM Corporation. Understanding Models. Ac-
cessed: 26.07.2023. Mar. 5, 2021.

[6] M. Armbruster. Parsing and Printing Java 7-15
by Extending an Existing Metamodel. Tech. rep.
July 28, 2022.

[7] M. Mazkatli et al. “Continuous Integration of Ar-
chitectural Performance Models with Paramet-
ric Dependencies – The CIPM Approach”. In:
(2022).


	Introduction
	Foundations
	The Java Model Parser and Printer
	The extended JaMoPP

	A Recovery Strategy
	Performance Evaluation
	Conclusion and Future Work

