
Towards Continuous Integration of Performance Models for

Lua-Based Sensor Applications

Manar Mazkatli
manar.mazkatli@kit.de

Martin Armbruster
martin.armbruster@kit.edu

Anne Koziolek
koziolek@kit.de

Karlsruhe Institute of Technology (KIT), Am Fasanengarten 5, 76131 Karlsruhe, Germany

Abstract

Architecture-level performance models (aPMs) pro-
vide valuable insights for design decisions with perfor-
mance predictions. Due to source code changes and
system adaptations, it remains challenging to keep
aPMs up-to-date and ensure their consistency during
agile software development. The Continuous Integra-
tion of Performance Models (CIPM) approach focuses
on maintaining the consistency between aPMs and
software artifacts. After each significant change dur-
ing the software development and operation, CIPM
automatically updates aPMs.

However, the current implementation of CIPM is
limited to Java- and microservice-based applications.

In this paper, we evaluate whether conceptual
changes are required if CIPM is applied to the Lua
programming language and industrial sensor applica-
tions. Our evaluation is based on a real Lua-based
sensor application from the SICK AppSpace ecosys-
tem and an artificial one. The findings demonstrate
the feasibility of CIPM as no significant conceptual
changes were required, but rather technical ones.

1 Introduction

Software systems are becoming more complex due to
frequent changes in the source code at development
time (Dev-time) and system composition at opera-
tion time (Ops-time). Architecture-level Performance
Models (aPMs) [1, 5] model the software architecture
to decrease the complexity and understand the soft-
ware system. Besides, aPMs enable efficient assess-
ments of performance impacted by design decisions.

Agile development complicates the task of keeping
aPMs up-to-date with software artifacts because of
the frequent changes and short or no design phases.
Existing approaches for the consistency management
lack a comprehensive handling of all changes affecting
an aPM leading to concerns about the accuracy of
aPMs and related performance predictions.

To address these challenges, the Continuous Inte-
gration of architectural Performance Models (CIPM)
approach was proposed [6]. CIPM automatically up-
dates a parameterized aPM after source code changes
at Dev-time and changes at Ops-time (e.g., deploy-

ment and workload). This supports the comprehen-
sion of software systems and cost-effective proactive
identification of performance issues.

However, the current prototypical implementation
of CIPM is limited to Java- and microsevice-based
applications. This paper aims to evaluate the appli-
cability of CIPM for another programming language
and technology. In particular, we aim to answer
the following research question: Are there conceptual
changes required if the approach is implemented for
another programming language or technology? Hence,
we adapt and evaluate the CIPM approach for Lua-
based sensor applications. Our key contributions are:

• A metamodel and parser for Lua (based on the
Xtext grammar from Melange [4])

• Consistency Preservation Rules (CPRs) keeping
Lua models, an aPM and Instrumentaion Model
(IM) consistent to apply the CIPM approach

We evaluate our extensions with one real-world and
one artificial application from the SICK AppSpace1.
The evaluation indicates the applicability of the CIPM
approach to SICK AppSpace apps so that no concep-
tual changes are required. However, additional tech-
nical changes are still necessary.

In the following section (Section 2), we introduce
the required background. Then, the approach in Sec-
tion 3 is followed by its evaluation in Section 4. At
last, the paper is concluded with related work and a
conclusion in Section 5 and Section 6, respectively.

2 Foundation

The CIPM approach updates an aPM incrementally
enabling architecture-based performance predictions
[6]. It also ensures consistency between the aPM and
software artifacts (source code and measurements).
Thus, CIPM employs Vitruvius which is a model-
based consistency preservation platform [7]. Vitru-
vius allows the definition of CPRs specifying how to
preserve consistency between related elements for a
given specific change.

During Dev-time, CIPM detects changes in a Git
repository and applies them in Vitruvius so that
CPRs are executed and the related parts in the aPM

1See https://www.sick.com.

https://www.sick.com


and an IM are updated [6]. The IM contains instrumen-
tation points for code parts that have been changed
by the recent commit. Consequently, the adaptive in-
strumentation of CIPM generates instrumented code
to monitor the instrumented parts.

CIPM monitors the changed code of the applica-
tion adaptively (i.e., monitoring is deactivated after
an accurate calibration) to also reduce the monitoring
overhead [6]. The resulting monitoring data is used
to incrementally calibrate the aPM’s parameters con-
sidering their parametric dependencies and enabling
performance predictions.

CIPM’s current implementation uses a Java code
model [8], the Palladio Component Model (PCM) as
aPM and measurements from the Kieker monitoring
tool [2]. The PCM is a framework to model and ana-
lyze component-based architecture including the com-
ponent’s abstract behavior expressed as Service Effect
Specifications (SEFF) and their contained actions [5].

3 Approach

This paper presents an extension to the CIPM ap-
proach to support Lua-based sensor applications from
the SICK AppSpace. Therefore, we extend CIPM
with a metamodel for Lua (subsection 3.1) and CPRs
to update the PCM and IM (subsection 3.2). The
implementation and evaluation of this extension were
carried out by Burgey during his master thesis [9].

3.1 Modeling Lua Code

As the CPRs in Vitruvius are defined at the meta-
model level, a metamodel for Lua is required. There-
fore, we extend an existing Xtext-based2 Lua gram-
mar from the Melange project [4] and generate the
metamodel from it. An excerpt of the metamodel is
depicted in Figure 1. The generated parser creates a
model from a single code file with the root element
Chunk representing the content of the Lua file. The
content itself consists of a Block acting as the con-
tainer for Statements. Because CIPM requires one
model for the entire source code encompassing all in-
dividual models, they are combined into one model
(the Application). Additionally, every Chunk is en-
capsulated in a SourceFile representing the file from
which the Chunk was parsed, and several SourceFiles
are contained within an App element which describes
a SICK AppSpace app allowing their modeling.

3.2 Consistency Preservation Rules

The CPRs are mainly focused on updating the PCM
if the code changes. In this context, every App is
mapped to a PCM component so that a component
is created or deleted if an App is created or deleted.
Additionally, apps expose functions as their API with
serveFunction function calls. Therefore, we generate

2Xtext is a development framework for languages and pro-
vides the generation of metamodels, parsers, serializers and
more. See https://eclipse.dev/Xtext/.

1
apps0..*

1

files0..*

chunk

1

block

1

statements0..*

Application

App

name:String

SourceFile

name:String

Chunk

Block

Statement

Figure 1: Excerpt from the Lua metamodel [9]. Blue
classes are extensions.

an interface for every component in which the served
functions are contained as the component’s services.
Due to the dynamic typing of Lua, we currently use
one data type to represent any type in the Lua model.

To model the abstract behavior of the apps’ ex-
posed functions, we introduced CPRs on the state-
ment level which update the SEFFs fine-grained. If a
statement is affected by a change, contained function
calls are extracted and classified regarding the tar-
geted component (the same or a different one). Based
on this classification, the statement is assigned to an
existing or newly created SEFF action: existing if the
targeted component is the same and there is a suitable
action for internal calculations and new if there is no
such action or the targeted component is a different
one. In contrast, if statements are removed, corre-
sponding actions are only removed if the statement
was the last one related to the action.

We also define CPRs that create instrumentation
points in IM for each new action in PCM to later cal-
ibrate it. Since new statements can be assigned to
an existing SEFF action, a CPR ensures that the up-
dated SEFF actions also have corresponding activated
instrumentation points.

4 Evaluation

In our evaluation, we aim to apply the CIPM approach
to Lua-based sensor applications. This raises the
question: How accurately can the CIPM approach up-
date the models of the aforementioned applications?
Additionally, we explore the extent to which the de-
fined CRPs can decrease the necessary monitoring
overhead. Thus, we took the Git history of two sensor
applications and put the commits into CIPM to sim-
ulate the development of the applications. For every
commit, we then check that the models (Lua Model,
PCM and IM) are accurately updated by calculating
two metrics [9]: the Jaccard Coefficient for comparing
updated Lua and PCM models with reference ones to
measure their similarity, and the F-Score to match IM

elements with the recently updated PCM elements,
ensuring IM has all required instrumentation points.

https://eclipse.dev/Xtext/


The first application we used is a tiny artificial one
built from sample apps and covers 7 commits, with
overall 862 added and 283 removed lines affecting one
to four files. The second one is a real-world app for
detecting and sorting objects from images based on
colors, whose history comprises 12 commits with 6651
added and 2663 removed lines affecting one to 13 files.

The results show accurate updates in all models
based on commits from both applications, except for 6
commits within the second application. These 6 com-
mits led to accurate updates in nearly all elements
of the Lua model (at least 94.7%), with discrepancies
arising only from interchanged statements. The algo-
rithm to match Lua elements to detect changes strug-
gles in this case in handling the element order. This
affected the subsequent PCM update, resulting in a
minimum accuracy of 94% for those 6 commits. For
the IM, it was accurately updated by the 6 commits
except one, where just one instrumentation point was
not activated as intended, resulting in a 99% accuracy.

To conclude, the limitation in the implemented Lua
matching algorithm is due to the implementation it-
self, not conceptual constraints. In the future, we rec-
tify this issue for exact Lua model updates.

Concerning the required monitoring overhead
based on the updated IM, the results indicate a reduc-
tion of up to 77.1% for the first application and 73.5%
for the second one in the number of instrumentation
points, compared to the potential required number
without applying CIPM’s adaptive instrumentation.

To conclude, our observation reveals nearly accu-
rate model updates, barring minor technical issues in
model matching implementation, and confirms over-
head reduction without conceptual changes to CIPM.

5 Related Work

Lua Analysis in Rascal (AiR) by Klint et al. [3] is a
framework to statically analyze Lua programs that
customize the behavior of games. Implemented in
Rascal, Lua AiR parses the Lua files and performs
different checks including a type check by considering
the interfaces between the Lua code and the game en-
gine. Compared to Lua AiR, our extensions to CIPM
use an Xtext-based grammar with a generated meta-
model instead of Rascal. Besides, types and interfaces
between Lua and its execution environment are cur-
rently not considered in CIPM while we target aPMs.

6 Conclusion

The CIPM approach enables the automatic update of
aPMs to analyze software systems. Its current imple-
mentation is limited to Java and microservice-based
applications. In this paper, we investigated if concep-
tual changes are required to support another program-
ming language or technology, particularly Lua-based
sensor applications from the SICK AppSpace.

CIPM is extended with a metamodel and parser for
Lua and CPRs to update the PCM and IM. Evaluation

with two sensor applications indicates that CIPM can
effectively update models for Lua-based sensor appli-
cations with reductions in required monitoring over-
head. Furthermore, the absence of conceptual changes
in the CIPM approach highlights its potential suitabil-
ity for model-based performance prediction across di-
verse application domains that use different program-
ming languages and technologies.

In future work, we plan to complete the support
for Lua-based sensor applications by implementing
the adaptive instrumentation for Lua. Afterwards, we
want to evaluate the full CIPM approach with more
real-world Lua applications and other languages.

Acknowledgment

This publication is based on the research project
SofDCar (19S21002) that the German Federal Min-
istry for Economic Affairs and Climate Action funds.
The first two authors contribute equal to this work.

References

[1] D. A. Menascé, V. A. Almeida, and L. W.
Dowdy. Performance by Design: Computer Ca-
pacity Planning by Example. Prentice Hall, 2004.

[2] A. van Hoorn, J. Waller, and W. Hasselbring.
“Kieker: A Framework for Application Perfor-
mance Monitoring and Dynamic Software Analy-
sis”. In: Proceedings of the 3rd ACM/SPEC Intl.
Conference on Performance Engineering. 2012.

[3] P. Klint, L. Roosendaal, and R. van Rozen.
“Game Developers Need Lua AiR”. In: Enter-
tainment Computing - ICEC. Springer, 2012.

[4] T. Degueule et al. “Melange: A Meta-Language
for Modular and Reusable Development of
DSLs”. In: Proceedings of the 2015 ACM SIG-
PLAN Intl. Conference on Software Language
Engineering. SLE 2015. ACM, 2015, pp. 25–36.

[5] R. H. Reussner et al. Modeling and Simulating
Software Architectures – The Palladio Approach.
Cambridge, MA: MIT Press, Oct. 2016. 408 pp.

[6] M. Mazkatli et al. “Incremental Calibration of
Architectural Performance Models with Para-
metric Dependencies”. In: IEEE Intl. Conference
on Software Architecture (ICSA 2020). Salvador,
Brazil, 2020, pp. 23–34.

[7] H. Klare et al. “Enabling consistency in view-
based system development – The Vitruvius ap-
proach”. In: Journal of Systems and Software 171
(2021).

[8] M. Armbruster. Parsing and Printing Java 7-15
by Extending an Existing Metamodel. Tech. rep.
July 28, 2022.

[9] L. Burgey. “Continuous Integration of Perfor-
mance Models for Lua-Based Sensor Applica-
tions”. Master’s Thesis. Karlsruhe: Karlsruhe In-
stitute of Technology (KIT), 2023.


	Introduction
	Foundation
	Approach
	Modeling Lua Code
	Consistency Preservation Rules

	Evaluation
	Related Work
	Conclusion

