
Benchmarking Function Hook Latency in Cloud-Native Environments

Mario Kahlhofer1, Patrick Kern1, Sören Henning1,2, Stefan Rass2

{mario.kahlhofer, patrick.kern}@dynatrace.com, {soeren.henning, stefan.rass}@jku.at
1Dynatrace Research, 2Johannes Kepler University Linz

Abstract

Researchers and engineers are increasingly adopting
cloud-native technologies for application development
and performance evaluation. While this has improved
the reproducibility of benchmarks in the cloud, the
complexity of cloud-native environments makes it dif-
ficult to run benchmarks reliably. Cloud-native appli-
cations are often instrumented or altered at runtime,
by dynamically patching or hooking them, which in-
troduces a significant performance overhead. Our
work discusses the benchmarking-related pitfalls of
the dominant cloud-native technology, Kubernetes,
and how they affect performance measurements of dy-
namically patched or hooked applications. We present
recommendations to mitigate these risks and demon-
strate how an improper experimental setup can nega-
tively impact latency measurements.

1 Introduction

Cloud-native technologies aim to build loosely cou-
pled, resilient, observable, and secure systems [3]. Ob-
servability and security are typically achieved by dy-
namically instrumenting or altering already built ap-
plications with function hooks [2]. These are small
pieces of code added to an application’s functions. In
particular, security tools need to dynamically modify,
redirect, or block specific execution patterns, which
often results in significant performance penalties [7].

Careful benchmarking is required to measure the
performance impact of such changes. Besides em-
pirical standards for software benchmarking [9] and
methodological principles for performance evaluation
in cloud computing [6], we address benchmarking-
related pitfalls of cloud-native environments with:

1. Recommendations on how to measure the latency
of function hooks in cloud-native environments.

2. A demonstration of an improper experimental
setup that makes hypothesis testing harder.

2 Cloud-Native Benchmark Suite

Cloud environments are frequently used to build
complete benchmark suites, as they provide a well-
reproducible environment [8]. A typical benchmark
suite (Figure 1) consists of a system under test (SUT),
e.g., the patched application, a load generator send-
ing requests to that application, and a monitoring

tool measuring performance metrics. Latency is of-
ten measured directly by the load generator.

In Kubernetes, workloads are organized into pods
of one or more containers which share storage and
networking resources. Physical or virtual machines
that run these pods are called nodes.

Recommendation 1 When measuring latency, en-
sure that the load generator and the SUT are in sep-
arate containers within the same pod. Otherwise, ad-
ditional network hops may distort the measurements.

Recommendation 2 If components of the bench-
mark suite need to be in separate pods, ensure that
both pods are deployed on the same physical node,
e.g., by specifying node restrictions in Kubernetes.

Load Generator

Monitoring Tool

System Under Test
(SUT)

Figure 1: Typical components of a benchmark suite

Recommendation 3 Weigh the benefits of a service
mesh against its additional network overhead. Service
meshes wrap each application behind a reverse proxy
and make it easier to monitor and control inbound
and outbound network traffic [10].

Recommendation 4 Generally avoid benchmarking
in multi-tenancy clusters, i.e., clusters that are shared
across teams, either physically or virtually.

3 Function Hook Granularity

We distinguish four layers [2, 12] where function hooks
or patches can be injected (Figure 2):

• Application-level hooks use methods imple-
mented by the application’s developers, e.g., a
plugin system. Since such systems are not widely
available, this layer cannot be used for general-
purpose hooks on already built applications.

Application

Runtime

Libraries

Kernel

↑ container

↓ node

Figure 2: Typical layers of a software application

https://orcid.org/0000-0002-6820-4953
https://orcid.org/0009-0006-6932-3045
https://orcid.org/0000-0001-6912-2549
https://orcid.org/0000-0003-2821-2489


• Runtime-level hooks use native capabilities of
language runtimes to modify applications, e.g.,
the JVM Tool Interface (JVM TI), the .NET Pro-
filing API, or Node.js module preloading.

• Library-level hooks override symbols in shared
libraries, e.g., by the “LD PRELOAD trick” [2].1

• Kernel-level hooks use native capabilities of the
operating system to modify application behavior,
e.g., kernel modules or eBPF programs.

Recommendation 5 The monitoring tool should be
placed as close as possible to the layer where the hook
is injected. Testing farther away pollutes measure-
ments with noise from other layers (Section 4.2).

To achieve optimal results, hooking and monitoring
should be done at the “same layer”, i.e., by embed-
ding monitoring functionality into the hook itself, e.g.,
by recording timestamps before and after the hook is
executed, directly in the hook’s code.

Moving the monitoring tool further away from the
hook is justifiable when one wants to more accurately
represent real-world behavior instead.

Recommendation 6 Describe if the benchmark
measures the specific hooking overhead in isolation
(micro benchmark), or rather represents a real-world
application with a hook injected into it (macro bench-
mark) [1]. Benchmarking both cases and discussing
the differences is recommended.

4 Demonstration

We first build a Java application that simply re-
sponds with “Hello World” to any HTTP request. We
then implement a library-level LD PRELOAD hook
that blocks all requests that contain specific keywords
(Listing 1). The hook changes the read2 system call
by overriding the corresponding symbol in the C stan-
dard library.3 We then measure our application’s net-
work performance with and without the hook.

ssize_t read(int fd, void *buf, size_t count) {

read_t read_ptr = (read_t)dlsym(RTLD_NEXT, "read");

ssize_t bytes_read = read_ptr(fd, buf, count);

if (is_http_socket(fd)) {

if (contains_keyword(buf, count)) {

// trace or block call

}

}

return bytes_read;

}

Listing 1: A hook on the read symbol of glibc

Low-level function hooks carry the risk that the
hooked function is used by high-level functionality for
a purpose other than the one originally intended. For
example, the read call that we override here is also
used to read regular files, not just network packets.

1https://man7.org/linux/man-pages/man8/ld.so.8.html
2https://man7.org/linux/man-pages/man2/read.2.html
3The full source code can be found at https://github.com/

dynatrace-research/function-hook-latency-benchmarking

Recommendation 7 Therefore, describe how the
hooked function is typically used by applications and
ensure that the benchmarks reflect their proper use,
e.g., with synthetic micro benchmarks [1], but also
real-world behavior. Suitable cloud-native, real-world
reference applications are TeaStore [4], DeathStar-
Bench [5], or Unguard [11] for security use cases.

4.1 Experimental Setup

Our experiment consists of two containers: Locust (a
performance testing tool) as the load generator with
embedded monitoring, and the SUT. With contain-
ers, we not only represent cloud-native paradigms, but
also isolate concerns between the benchmark owner
and the SUT owner. We compare four conditions:

1. In Docker (a popular container runtime): Both
containers run on a single server, communicating
through the host network.

2. In Kind (a tool for running Kubernetes using
Docker containers): Both containers run inside a
single pod on a local, single-node Kind cluster.

The remaining two conditions use the AWS EKS
service (a popular enterprise-grade cloud provider).

3. In EKS pod: Both containers run inside a single
pod in a managed, single-node AWS EKS cluster.

4. Across EKS nodes: Both containers run in sep-
arate pods, each pod on a different node, in a
managed AWS EKS cluster with two nodes.

Docker and Kind are running on a 24-core (Intel
Xeon E5-2680 v3) Ubuntu 22.04 server with 64 GB
memory. EKS nodes are t3.medium EC2 instances
(2 vCPUs, Intel Xeon Platinum 8000, 4 GB memory).

Recommendation 8 Ensure that the servers do not
hit any resource limits during the experiment to avoid
performance degradations due to resource contention.

We measure the round-trip time (RTT) of 50, 000
HTTP request-response interchanges between Locust
and the SUT. We empirically observed that the RTT
definitely stabilizes under all four conditions after
∼ 4, 000 warm-up requests (Figure 3).

4.2 Hypothesis Testing and Results

Figure 4 shows the RTT distribution per condition,
with and without the hook, after warm-up requests.

Our function hook must introduce a performance
overhead: To test the null hypothesis that the mean
RTT is the same with and without the hook, we use
an independent two-sample t-test, assuming equal but
unknown variances and equal sample sizes.4 Let x̄1

and x̄2 be the sample means, n be the sample size per
condition, and sp the pooled standard deviation5, then

the test statistic is given by: t = (x̄1− x̄2) / (sp
√

2/n).

4We use the stats.ttest ind test from the SciPy package.
5With sample variances s21 and s22 and equal sample sizes,

the pooled variance is defined by s2p = (s21 + s22) / 2.

https://man7.org/linux/man-pages/man8/ld.so.8.html
https://man7.org/linux/man-pages/man2/read.2.html
https://github.com/dynatrace-research/function-hook-latency-benchmarking
https://github.com/dynatrace-research/function-hook-latency-benchmarking


1

10

R
TT

(m
s)

in Kind in Docker

0 2,000 4,000 6,000 8,000 10,000
Iterations

1

10

R
TT

(m
s)

across EKS nodes in EKS pod

Figure 3: Logarithmic lag plot on measured RTT

in Docker in Kind in EKS pod across EKS nodes

0

1

2

3

4

5

R
TT

(m
s)

Unmodified app App with function hook

Figure 4: Tukey boxplots on 50,000 RTT measure-
ments per condition, without any warm-up requests

With n = 46, 000 samples left per condition af-
ter removing warm-up requests, the hooking overhead
is significant (α = 0.05) in three of four conditions
(all p < 0.0001). The across EKS nodes condition is
not significant (p = 0.2713) since we lose a lot of sta-
tistical power in EKS due to the higher RTT variance.

As expected and in line with related work [6], mea-
surements taken in EKS generally exhibit a much
higher variance than measurements on our own server,
due to diverse factors that can hardly be controlled
for. We expected the Docker condition, being the
most minimal setup, to show the lowest variance
(sp = 0.50), and the Kind condition, which just adds
a few Kubernetes components, to show the second-
lowest variance (sp = 0.84). We also expected that the
network latency across EKS nodes shows the highest
variance (sp = 1.95; 3.9 times higher than in Docker).
Packets in that condition traverse the origin container,
pod, and node, some intermediate network that inter-
connects nodes, until they reach the target node, pod,
and container again. In a multi-cluster environment,
a communication path with that many hops is com-
mon. Kubernetes services, which are widely used ab-
stractions on top of pods, would add even more hops
to that route. Perhaps surprising is that the vari-
ance of the EKS pod condition was still relatively high
(sp = 1.64). Keeping network communication within
the same pod decreased the variance, but it seems
that the background noise of our EKS cluster is still
relatively high and affecting inter-pod traffic.

Recommendation 9 As shown, measurements in
cloud-native environments tend to have a higher vari-
ance than in local environments [6]. To regain statis-
tical power, the sample size must be increased.

Recommendation 10 Conducting experiments in
differently configured environments is a general prin-
ciple [6, P2] that is especially relevant for cloud-
native environments. Different cloud providers, ser-
vice meshes, or network setups help increase diversity.

5 Conclusion

This work provides 10 practical recommendations for
researchers and engineers who benchmark function
hook latency in cloud-native environments, but want
to reduce the measurement bias introduced by these
environments. We have shown that function hook la-
tency measurements can be easily contaminated by
noise, without doing anything obviously wrong. We
hope to raise awareness while providing practical guid-
ance for similar latency-based benchmarks, as some of
our recommendations are also broadly applicable.

References

[1] J. Waller and W. Hasselbring. Performance
Benchmarking of Application Monitoring
Frameworks. KCSS 2014/5. 2014.

[2] J. Lopez et al. “A Survey on Function and Sys-
tem Call Hooking Approaches”. In: HaSS 1.2
(2017).

[3] CNCF. Cloud Native Definition. 2018.

[4] J. von Kistowski et al. “TeaStore: A Micro-
Service Reference Application for Benchmark-
ing, Modeling and Resource Management Re-
search”. In: MASCOTS ’18. 2018.

[5] Y. Gan et al. “An Open-Source Benchmark
Suite for Microservices and Their Hardware-
Software Implications for Cloud & Edge Sys-
tems”. In: ASPLOS ’19. 2019.

[6] A. V. Papadopoulos et al. “Methodological Pr-
inciples for Reproducible Performance Evalua-
tion in Cloud Computing”. In: TSE 47.8 (2019).

[7] W. Viktorsson, C. Klein, and J. Tordsson.
“Security-Performance Trade-offs of Kubernetes
Container Runtimes”. In: MASCOTS ’20. 2020.

[8] S. Henning, B. Wetzel, and W. Hasselbring.
“Reproducible Benchmarking of Cloud-Native
Applications with the Kubernetes Operator
Pattern”. In: SSP ’21. 2021.

[9] P. Ralph et al. Empirical Standards for Software
Engineering Research. 2021. preprint.

[10] S. Henning, B. Wetzel, and W. Hasselbring.
“Cloud-Native Scalability Benchmarking with
Theodolite Applied to the TeaStore Bench-
mark”. In: SSP ’22. 2022.

[11] Dynatrace LLC. Unguard: An Insecure Cloud-
Native Microservice-Based Application. 2023.

[12] C. Islam, V. Prokhorenko, and M. A. Babar.
“Runtime Software Patching: Taxonomy, Sur-
vey and Future Directions”. In: JSS 200 (2023).


	Introduction
	Cloud-Native Benchmark Suite
	Function Hook Granularity
	Demonstration
	Experimental Setup
	Hypothesis Testing and Results

	Conclusion

