
Benchmarking Stream Processing Frameworks

for Large-Scale Data Shuffling

Sören Henning1,2, Adriano Vogel1,2, Michael Leichtfried2, Otmar Ertl2, Rick Rabiser1
1Co-Innovation Lab LIT CPS Lab, Johannes Kepler University Linz, Austria

2Dynatrace Research, Linz, Austria
{firstname.lastname}@{jku.at, dynatrace.com}

Abstract

Distributed stream processing frameworks help build-
ing scalable and reliable applications that perform
transformations and aggregations on continuous data
streams. We outline our ongoing research on design-
ing a new benchmark for distributed stream process-
ing frameworks. In contrast to other benchmarks, it
focuses on use cases where stream processing frame-
works are mainly used for re-distributing data records
to perform state-local aggregations, while the actual
aggregation logic is considered as black-box software
components. We describe our benchmark architecture
based on a real-world use case, show how we imple-
mented it with four state-of-the-art frameworks, and
give an overview of initial experimental results.

1 Introduction and Background

Distributed stream processing frameworks such as
Spark, Flink, Kafka Streams, or Hazelcast (Jet) have
gained widespread adoption over the last years not
only for building data analytics pipelines, but also
for implementing core business logic in software-based
organizations [1]. Such frameworks provide primi-
tives and high-level APIs to express directed acyclic
processing graphs that filter, transform, aggregate,
and merge data streams. Accompanied by sophisti-
cated semantics for time windows and key-based joins,
stream processing frameworks thus offer a program-
ming model to design and implement large-scale dis-
tributed applications. While this surely has many ad-
vantages, there are cases where building entire appli-
cations this way does not work. For example, squeez-
ing complex business logic or existing software com-
ponents into such programming models and architec-
tures can be difficult. Nevertheless, stream process-
ing frameworks can still be helpful to build applica-
tions with mainly custom logic as they provide, for
example, abstractions for cluster management, means
to scale out the data processing, fault-tolerant state
management, well-defined processing guarantees (e.g.,
exactly-once or at-most-once), and a rich ecosystem of
documentation, support, and associated tooling.

Several papers on benchmarking stream process-
ing frameworks have been published [6]. However,

they usually focus on specific use cases utilizing the
wide range of framework features including com-
plex dataflow graphs and window semantics. It has
been shown that the performance of such frameworks
highly depends on the use case [4] and, hence, it can
be challenging to map the result of general purpose
benchmarks to production systems [5]. With this pa-
per, we give an insight into our ongoing research on
evaluating the performance of different stream pro-
cessing frameworks. We introduce ShuffleBench, our
proposal for a new stream processing benchmark fo-
cusing on the use of stream processing frameworks for
shuffling (i.e., re-partitioning) data streams to per-
form state-local aggregations. In contrast to many
other benchmarks, it is inspired by requirements of a
large real-world software system and can be config-
ured for various use cases of large-scale data shuffling.

2 The ShuffleBench Benchmark

Real-world Inspiration Our benchmark is de-
signed to address the requirements for continuous
dashboard queries and real-time alerting of a market-
leading cloud observability platform. Using a powerful
query language, internal and external clients can de-
fine complex rules to aggregate and correlate different
data sources such as metrics, events, logs, and traces.

Stream processing frameworks are used to filter,
transform, aggregate, or correlate data streams in
near real time. The actual processing logic can be
considered as queries on data streams, either defined
with programmatic APIs or via dedicated SQL-like
languages. With ShuffleBench we look into use cases
in which a high amount of queries have to be executed
in parallel, although each query only requires a very
small portion of the overall data volume. Therefore,
it is not required to parallelize or even distribute the
execution of a single query, but to only route those
data records to a query instance as needed. More-
over, dedicated software components such as anomaly
detection models might already include the logic for
operations such as joins or sliding windows such that
these features are not required by the framework.

Benchmark Dataflow Architecture A well-
suited way to meet the listed requirements is



Stream Processing Application Instances
(implemented with, e.g., Flink, Hazelcast, Kafka Streams, or Spark)

Messaging
(e.g., Kafka)

Messaging
(e.g., Kafka)

read �atMap groupBy aggregate write

read �atMap groupBy aggregate write

read �atMap groupBy aggregate writeinput #1

input #2

input #3

output #1

output #2

output #3

Figure 1: The ShuffleBench dataflow architecture at runtime for three stream processing application instances.

a MapReduce-like architecture on continuous data
streams as it can be built with modern stream pro-
cessing frameworks. Figure 1 depicts our benchmark
architecture for a corresponding stream processing ap-
plication. It can be deployed with multiple instances,
which execute the same processing logic, but on dif-
ferent data subsets. The data processing starts by
reading data records from a messaging system such
as Kafka. Kafka topics are partitioned, allowing each
instance of the stream processing application to sub-
scribe to a dedicated set of partitions. After inges-
tion, the matcher service finds the relevant queries
for each record. The matcher logic is wrapped in a
flatMap operation of a stream processing framework
that duplicates an incoming record for each relevant
query, while assigning a query-identifying key to each
duplicate. In a subsequent operation, the data is re-
partitioned among all instances such that all records
which have the same query key assigned are forwarded
to the same instance. This is done with an opera-
tion of the stream processing framework often called
groupBy. In the next step, the actual black-box query
logic is executed, which is stateful by aggregating mul-
tiple records. We abstract the query logic in real-time
consumers, wrapped in an aggregate operation of the
stream processing framework that manages the state.
These real-time consumers adhere to a simple inter-
face: They consume an incoming record and the pre-
vious state and output the updated state and, option-
ally, an alerting event. Finally, these alerting events
are written to another Kafka topic.

Benchmark Implementations We implemented
the proposed benchmark for the four stream process-
ing frameworks Flink, Hazelcast, Kafka Streams, and
Spark Structured Streaming; as well as a correspond-
ing load generator. To provide a fair comparison, the
implementation of the matcher service and the real-
time consumers (which would be domain-specific in
production) are shared among all frameworks.

To simulate incoming observability data, our load
generator generates data records at configurable fre-

quency with random byte content of configurable size.
It can be deployed in a distributed fashion and writes
the generated records to Kafka.

The matcher service is configured with a set of
rules, which define their selectivity, i.e., the probabil-
ity that a record is matched by this rule. The actual
stateful aggregations logic is currently the same for
each query: We count the number of received records
and generate an alerting event if the count is dividable
by a configured value.

Benchmark Configuration Options Our Shuf-
fleBench implementations are highly configurable to
evaluate frameworks for different use cases of large-
scale data shuffling tasks. This includes the size of
incoming records, the number of different real-time
consumers, the total selectivity for all real-time con-
sumers as well as the distribution of individual se-
lectivities, the size of the aggregation state, and the
output frequency of the real-time consumers. Addi-
tionally, all stream processing frameworks have a wide
range of configuration options that impact through-
put, latency, scalability, and fault-tolerance.

Automated Benchmark Execution We utilize
and extend the Theodolite benchmarking frame-
work [2, 3] to automate the benchmark execution in
Kubernetes-based cloud environments. This includes
the declarative definition of benchmark experiments,
automated setup and teardown of all involved soft-
ware components (i.e., stream processing frameworks,
load generator, and Kafka) as well as the collection of
measurement data.

3 Initial Experimental Results

We conduct initial experiments with our proposed
benchmark to evaluate the throughput of the stream
processing frameworks Flink, Hazelcast, and Kafka
Streams. The benchmark setup is deployed on
an AWS-managed Kubernetes cluster, consisting of
9 nodes: 3 m6i.xlarge nodes run the stream processing
framework, 3 m6i.2xlarge nodes run one Kafka bro-



0 180 360 540 720 900
seconds since start

0

200k

400k

600k

800k

re
co

rd
s/

se
co

nd

Flink Hazelcast Kafka Streams

(a) 10k consumers, 1024 bytes/record

0 180 360 540 720 900
seconds since start

0

200k

400k

600k

800k

re
co

rd
s/

se
co

nd

Flink Hazelcast Kafka Streams

(b) 1M consumers, 1024 bytes/record

0 180 360 540 720 900
seconds since start

0

200k

400k

600k

800k

re
co

rd
s/

se
co

nd

Flink Hazelcast Kafka Streams

(c) 1M consumers, 128 bytes/record

Figure 2: Throughput of Flink, Hazelcast, and Kafka Streams benchmarked with ShuffleBench.

ker each, and 3 m6i.xlarge nodes run the load genera-
tor instances plus additional benchmarking infrastruc-
ture. We generate a constant rate of 750 000 records
per second for 15 minutes and monitor the number of
records per second processed by the stream processing
framework. The stream processing application is de-
ployed with 9 single-CPU application instances (3 per
cluster node), resulting in a total parallelism of 9. Ex-
cept for a few adjustments for better comparability,
we test all frameworks with their default configura-
tions. In all experiments, the selectivities for all real-
time consumers sum up to 20% and each consumer
emits an altering event for every tenth record.

Figure 2 shows the throughput results for differ-
ent experiments. We can see that in all experi-
ments the observed throughput is quite stable after
a warm-up period of at most 3 minutes (dashed gray
line). Figure 2a shows the throughput for 10 000 real-
time consumers and records of 1024 bytes. We ob-
serve that Flink achieves the highest throughput, fol-
lowed by Kafka Streams with a 13.8% lower through-
put. Hazelcast shows a significantly lower throughput,
which is 85.2% lower than Flink.

Fig. 2b shows the results for repeating the experi-
ments but with one million real-time consumers. In-
creasing the number of consumers increases the man-
aged state (but not the total number of state updates)
as well as the runtime of the flatMap processing step.
We observe that Flink’s throughput decreases by only
25.5% compared to 10 000 consumers, while Kafka
Streams’ throughput decreases by even 40.8%. Hazel-
cast’s throughput does not change, which indicates
that the bottleneck in Hazelcast’s processing is unre-
lated to the number of real-time consumers.

Considering that performance losses in Hazelcast
compared to other frameworks were not observed in
the related literature [4, 6], we conduct a further ex-
perimental scenario with one million real-time con-
sumers, but smaller sized records of 128 bytes. Fig-
ure 2c shows that with smaller records Hazelcast’s per-
formance increases significantly, achieving a process-
ing rate similar to Kafka Streams. Moreover, Flink
again achieves the highest throughput by processing
records at the same rate as they are generated, which
indicates that even higher throughputs are achievable.

4 Conclusions and Road Ahead

With ShuffleBench, we propose a new benchmark to
assess the performance of stream processing frame-
works for stateful aggregation use cases. While this
paper already shows initial throughput results for
Flink, Hazelcast, and Kafka Streams, we now work
on detailed evaluations of different framework and use
case configurations for qualities such as throughput,
latency, fault tolerance, scalability, and operational
costs. This encompasses an in-depth investigation of
the fundamental causes behind the noted variations
in performance. As one of the next steps, we will
open-source our implementations to engage other re-
searchers and practitioners to join us in this research.

Acknowledgments We would like to thank JKU
and Dynatrace for co-funding this research.

References

[1] P. Carbone et al. “Beyond Analytics: The Evo-
lution of Stream Processing Systems”. Interna-
tional Conference on Management of Data. 2020.

[2] S. Henning and W. Hasselbring. “Theodolite:
Scalability Benchmarking of Distributed Stream
Processing Engines in Microservice Architec-
tures”. Big Data Research 25 (2021).

[3] S. Henning and W. Hasselbring. “A Configurable
Method for Benchmarking Scalability of Cloud-
Native Applications”. Empirical Software Engi-
neering 27.6 (2022).

[4] S. Henning and W. Hasselbring. “Benchmarking
scalability of stream processing frameworks de-
ployed as microservices in the cloud” (2023). doi:
10.48550/arXiv.2303.11088.

[5] J. Rank, A. Hein, and H. Krcmar. “The Role
of Performance in Streaming Analytics Projects:
Expert Interviews on Current Challenges and
Future Research Directions”. Softwaretechnik-
Trends 43.1 (2023). (SSP 2022).

[6] A. Vogel et al. “A systematic mapping of perfor-
mance in distributed stream processing systems”.
Euromicro Conference on Software Engineering
and Advanced Applications. In press. 2023.

https://doi.org/10.48550/arXiv.2303.11088

	Introduction and Background
	The ShuffleBench Benchmark
	Initial Experimental Results
	Conclusions and Road Ahead

