
Comparing the Performance of Data Processing Implementations

Lukas Beierlieb
lukas.beierlieb@uni-wuerzburg.de

University of Würzburg

Lukas Iffländer
lukas.ifflaender@uni-wuerzburg.de

University of Würzburg

Thomas Prantl
thomas.prantl@uni-wuerzburg.de

University of Würzburg

Samuel Kounev
samuel.kounev@uni-wuerzburg.de

University of Würzburg

Abstract

This paper compares the execution speed of R,
Python, and Rust implementations in the context of
data processing. A real-world data processing task
in the form of an aggregation of benchmark measure-
ment results was implemented in each language, and
the execution times were measured. Rust and Python
showed significantly superior performance compared
to the R implementation. Further, we compared the
results of different Python interpreters (the most re-
cent versions of CPython and PyPy), also resulting in
measurable variations. Finally, a study of the effec-
tiveness of multithreading was performed.

Keywords— software performance, data processing,
python, R language, rust

1 Introduction

Data handling (reading, aggregating, etc.) is crucial in any
domain. Inefficient processing of the data can potentially
waste considerable time. This is particularly problematic
when either lots of data have to be handled, or when it
is desired that data streams have to be processed contin-
uously. An illustrative example is given by the dataset
provided by Traini et al. [4]; the data aggregation is a
relatively simple task. However, the large file sizes slow
down the process. The raw data is 65 GB, but the data
published for research is aggregated to 362 MB.

In this paper, we address the following questions: Given
a similar implementation of the aggregation task in dif-
ferent suitable languages, how significant are the perfor-
mance differences between them? Are there measurable
differences in the runtime of the same code that is just
differently compiled or interpreted? Is there a benefit to
utilize parallelization in this scenario?

To answer these questions, we used public information
about the raw and processed dataset and experimentation
with the actual data to understand exactly how the data
is handled. Then, we choose two programming languages
that are very present in the data science domain: Python
and R. To contrast their interpreted nature, we also assess
Rust - a low-level, compiled language mainly known for
its speed and memory safety but also offers many libraries
for data processing. The aspect of different interpreters is
explored by using different versions of the default Python
interpreter and an alternative one called PyPy. The Rust
implementation is also modified to support parallel pro-

cessing to reach as high performance as possible.
A comparison between the already mentioned versions

has already been published [3]. There were strong sugges-
tions to compare a more idiomatic Rust implementation.
This paper presents the previous results together with the
improved Rust variant.

There are related works that assess performance im-
pact of different programming languages. For instance,
in their work [1], the authors compare the influence of the
programming language on CPU performance. To this end,
the authors wrote a database application in the languages
C#, PHP, JAVA, JSP, and ASP.Net and compared their
performance. In another paper [2], the authors compared
different sorting algorithms in Python and C regarding
their energy efficiency.

The rest of the paper is organized as follows: In Sec-
tion 2, we describe the dataset and the utilized program-
ming languages. Section 3, presents our methodoly; Sec-
tion 4 the measurement environment and results. Finally,
we summarize the paper in Section 5.

2 Background

This section introduces the dataset’s structure followed by
the considered languages.

Dataset The dataset utilized in this paper was
recorded and provided by Traini et al. [4]. In their work,
the authors investigated Java benchmarks. In the public
available Zenodo repository1, there are 600 raw files with a
size of 65 GB. Fourteen files are empty or corrupt, leading
to 586 files between 9 MB and 1.9 GB corresponding to
the 586 investigated benchmarks. Each file was exported
by the Java Microbenchmark Harness (JMH) in a JSON
format, containing an array of ten measurement runs at
the core. Each run includes 3000 measurement batches,
while each batch has multiple measurements. Each mea-
surement consists of a time stamp and a quantity. The
processed files, which are available on GitHub2, contain
the ten runs with 3000 data points, each being the aver-
aged value of a raw batch.

Programming Languages Python is a high-level,
general-purpose programming language that has gained
widespread popularity, particularly for data processing. A
wide range of libraries for data processing exist, includ-
ing Pandas, NumPy, and scikit-learn, which provide tools

1Zenodo: https://zenodo.org/record/5961018
2GitHub: https://github.com/SEALABQualityGroup/

icpe-data-challenge-jmh

https://zenodo.org/record/5961018
https://github.com/SEALABQualityGroup/icpe-data-challenge-jmh
https://github.com/SEALABQualityGroup/icpe-data-challenge-jmh


fn get_scale(unit) {...}

fn process_batch(batch) {

return sum_of_measurements(batch) /

count_of_measurements(batch)

}

fn process_file(raw_file, out_file) {

raw_json = parse_json(read_file(raw_file))

raw_data = raw_json[0] \

["primaryMetric"]["rawDataHistogram"]

scale = get_scale([0] \

["primaryMetric"]["scoreUnit"])

out_json = map(raw_data, run -> {

map(run, batch -> {

scale * process_batch(batch)

})})

out_text = json_to_string(out_json)

write_file(out_file, out_text)

}

for (file : raw_folder)

process_file(raw_folder "/" file, \

target_folder "/" file)

Listing 1: Pseudo code of processing code [3]

for data manipulation, cleaning, and analysis. PyPy is
an alternative implementation of the standard Python in-
terpreter (CPython), designed to be a faster and more
efficient drop-in replacement. It is built using a Just-In-
Time (JIT) compilation technique, resulting in a signifi-
cant performance boost compared to CPython while being
compatible with the majority of Python code and libraries.

R is a programming language and environment specifi-
cally designed for statistical computing and graphics and
widely used among statisticians, data analysts, and data
scientists. R has a rich ecosystem of libraries for data
processing, e.g., dplyr and tidyr.

Rust is a systems programming language designed for
safety, speed, and concurrency. It has gained popularity
in recent years, particularly in data processing, due to its
emphasis on memory safety and low-level control while
also providing high-level code abstractions.

3 Approach

To prevent that measurement results are biased towards
one of the competing languages, two approaches can be
considered. One option would be to optimize each lan-
guage’s implementation as much as possible. This would
highlight the maximum potential of each language. How-
ever, the programmers responsible for implementation
have to be experts to know how to achieve optimal per-
formance, otherwise, there is a bias toward the better-
understood languages. Therefore, we chose the second ap-
proach: Keeping the code comparable between languages.
Listing 1 shows our algorithm.

For every raw JSON file, we call process file() to pro-
cess the file and store the result in another JSON file in a
designated folder. File processing starts with loading its
content into memory, followed by letting a library parse
it into a JSON data structure. The field "scoreUnit",
can hold the values "s/op", "ms/op", "us/op", "us/op".
"get scale()" returns the respective scaling factor to
translate the units to seconds, i.e., 1, 1e-3, 1e-6, 1e-9.
The measurement data under "rawDataHistogram" is then
transformed such that all measurement batches are re-
placed with their average execution time, scaled to sec-

PP7 PP8 PP9 P7 P8 P9 P10 P11

20

25

30

35

R
u
n
ti
m
e
[s
]

Figure 1: Python variants’ runtimes for 1.9 GB file [3]

onds. The minimal JSON representation (with no spaces
and newlines) of the aggregated data is finally generated
and written to disk.

Each implementation closely follows the pseudocode in
a way that is idiomatic for the particular language. As an
example, in Python, list comprehensions are used to iter-
ate over the measurement data, R uses the lapply func-
tion, and Rust utilizes basic for loops. Python utilized its
builtin json module, R the rjson library (as well as purrr
to aggregate the batches), and Rust the serde framework
for JSON. To parallelize the Rust code, rayon’s parallel
iterator replaces the loop that iterates over all files.

Python and R as loosely typed languages are able to use
JSON-parsed values without type casting or error check-
ing. Rust is strongly typed and requires explicit handling
of all errors, so there are a lot of cast and checks in the
code, which hurts both readability and runtime speed.
Feedback to [3] suggested to use strongly typed JSON
parsing of serde to parse the JSON files into predefined
data structures, allowing type check-free usage afterwards.
We will refer to this as the improved Rust implementation.

We implemented scripts to build a docker image for
each variant, as well as scripts to run containers of these
images, and measure and store their execution times. The
code is published on GitHub3. The performed measure-
ments are presented in the next section.

4 Evaluation

The evaluation is split into two parts. Presented in Sec-
tion 4.1, the single-file measurements, we executed all 13
variants in succession on just the largest file (1.9 GB) of the
raw dataset. Without breaks in between, this is repeated
for 10 iterations. Then, in Section 4.2, we measure the run-
time for each variant for the whole dataset, but only once,
in order to get an estimate for the average runtime with-
out requiring tens of hours of measurements. Section 4.3
discusses the findings. The details about hardware and
software versions have been omitted in this paper, but
can be found in [3], as they have not changed.

4.1 Single-File Measurements

Figure 1 shows the runtimes (y-axis) of the same Python
code for a single 1.9 GB JSON file for 8 different Python
interpreters, which are listed on the x-axis. PP stands for
PyPy, P for default Python, and the number for the minor
version, e.g., PP7 is PyPy 3.7. The thick dot represents
the average of the 10 measured runtimes, and the bars
above and below indicate the minimum and maximum ex-

3GitHub: https://github.com/lbeierlieb/icpe23data_

challenge

https://github.com/lbeierlieb/icpe23data_challenge
https://github.com/lbeierlieb/icpe23data_challenge


Rust Rust+ PP9 P11 R

0

100

200

300

R
u
n
ti
m
e
[s
]

Figure 2: Different variants’ runtimes for a 1.9 GB file

ecution time. The results show that PyPy significantly
outperforms Python, with PyPy 3.9 at 19.20s and Python
3.11 at 28.45s. PyPy received slight performance boosts
with newer versions, while Python 3.10 and 3.11 are great
improvements over their previous versions.

Figure 2 presents a comparison between single-threaded
Rust, the fastest version of PyPy and Python, and R. R is
dramatically slower, requiring on average 280.73s, which
is ten times longer than what Python 3.11 needs. Due to
the scale, the difference between Rust and PyPy/Python is
not well visible. Though, as to be expected, Rust is faster
with a mean runtime of 8.40s for the original version, and
- yet notably faster - 6.75s for the improved.

4.2 Dataset Measurements

The single measured execution times for processing the
whole dataset are listed in Table 1. The durations corre-
spond generally well with the single-file runtimes. How-
ever, the real-world impact is probably better recogniz-
able. Waiting up to 20mins before being able to analyze
65 GB worth of data seems more reasonable than the 3-
hour stall with R. In the multi-file dataset measurement,
there are also results for parallelized Rust variants. The
captured runtimes show that speed-up is significant but
not linear with thread count, probably due to IO limita-
tions.

4.3 Threats to Validity and Discussion

As our results were only produced on one dataset and only
on one hardware setting, the results are surely not rep-
resentative of every scenario. With more time available,
more iterations could be executed to improve confidence in

Table 1: Runtimes for the whole dataset

Variant Runtime [HH:mm:ss.SS]

pypy3 7 00:11:55.14
pypy3 8 00:11:13.73
pypy3 9 00:10:32.92
python3 7 00:18:55.79
python3 8 00:19:10.60
python3 9 00:19:54.83
python3 10 00:17:02.74
python3 11 00:16:00.72
r rjson 03:00:56.25
rust serde 00:04:30.78
rust serde improved 00:04:04.52
rust serde 2thread 00:02:48.65
rust serde 3thread 00:02:04.94
rust serde 4thread 00:01:45.59

the consistency of the results. However, the 10 performed
repetitions on the single file showed sufficient repeatabil-
ity to recognize significant differences between variants.
Thus, we also believe the single dataset measurements give
a fairly representative runtime. The GitHub repository
can be used to replicate the results on similar hardware or
assess the situation on different machines.

We want to note the following aspects we discovered
during working on this paper. There can be huge differ-
ences between similar implementations—1:45 min to 3 h.
It is advisable to consider such aspects when choosing a
technology stack for larger amounts of data. Writing Rust
code requires more effort due to aspects like type declara-
tions and data ownership. Python and R make it simple
to quickly get to a working program, and in such cases as
transforming one dataset into another form, this might be
preferable. Python users are advised to try to run their
code with PyPy as there can be a significant performance
boost without code changes. Using strongly typed pars-
ing in Rust required some upfront effort to define the data
structures to parse to, but significantly improved the qual-
ity of the code and could decrease runtime by 18%. Re-
garding parallelization, we noticed that libraries like rayon
make it simple to gain performance when data parallelism
is possible. In the dataset aggregation scenario considered
in this paper, caution is required, though. Reading and
parsing large JSON files needs a considerable amount of
memory, and multiple threads simultaneously working on
large files can overload the system.

5 Conclusion

Data handling is a crucial task in any domain. However,
the large file sizes can slow down the process, especially
for continuous data streams that need to be processed in a
timely manner. This study investigates the effect of using
different programming languages (Python, R, and Rust)
and versions on data aggregation utilizing the dataset from
Traini et al.[4]. The results show that there are significant
differences among them, with a quick Rust, followed by
Python and a significantly slower R.

References

[1] M. A. Arif et al. “An Empirical Analysis of C#,
PHP, JAVA, JSP and ASP. Net regarding per-
formance analysis based on CPU utilization”. In:
Banglavision Research Journal 14.1 (2014).

[2] N. Schmitt et al. “Energy-Efficiency Comparison
of Common Sorting Algorithms”. In: 2021 29th
International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommuni-
cation Systems (MASCOTS) (2021).

[3] L. Beierlieb et al. “Efficient Data Processing: As-
sessing the Performance of Different Program-
ming Languages”. In: Companion of the 2023
ACM/SPEC International Conference on Per-
formance Engineering. 2023.

[4] L. Traini et al. “Towards effective assessment of
steady state performance in Java software: are we
there yet?” In: Empirical Software Engineering
28.1 (2023).


	Introduction
	Background
	Approach
	Evaluation
	Single-File Measurements
	Dataset Measurements
	Threats to Validity and Discussion

	Conclusion

