
Identifying Performance Challenges in Consistency Preserving
View-Based Environments

Lars König ∗, Thomas Weber †

lars.koenig@kit.edu, thomas.weber@kit.edu
Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

Abstract
The development of systems, e.g., software systems or
cyber-physical systems, becomes more and more com-
plex. Successful approaches for reducing the complex-
ity of their development are view-based model-driven
approaches, where developers see only the relevant
part of the system for a specific task. As these views
still show the same system, their content may be se-
mantically related and changes on one view might
require changes on other views to keep them consis-
tent. Although already used in industry, view-based
approaches are still not a mature field of research and
especially performance is often not a focus in their
development. For industrial application, however, per-
formance is crucial, as tools can otherwise become
unusable with the extensive sizes of industrial models.
To target this problem, we identify possible perfor-
mance challenges of consistency preserving view-based
environments and provide ideas on how to overcome
them.

Index terms— consistency preservation, model-
driven engineering, performance, view-based develop-
ment

1 Introduction
Systems have increased in size and complexity over
the last decades and still do. To tackle this complex-
ity, the concept of views, initially defined for software
development, has been applied to model-driven system
development. Views contain only parts of the infor-
mation of a system and thus reduce the complexity a
developer has to deal with. View-based development is
a field of active research [8, 9], but the performance of
view-based environments is often not the focus. While
view-based development is used in the industry today,
performance, especially with industry-scale models,
remains an open issue. As one measure towards bet-
ter performance, view-based environments may use
model deltas, which represent a model as a sequence of
changes. Applied, these changes construct the model

∗This work was supported by "Kerninformatik am KIT
(KiKIT)" funded by the Helmholtz Association (HGF).

†This work was supported by funding from the topic Engi-
neering Secure Systems of the Helmholtz Association (HGF)
and by KASTEL Security Research Labs.

state. This enables working in an incremental way,
which improves the performance, as, e.g., only changed
parts of a model have to be re-analyzed instead of
the whole model. As this is only one opportunity to
improve performance, we outline challenges in a consis-
tency preserving view-based environment and provide
ideas on how to overcome them.

Scope In our paper, we want to focus on the perfor-
mance of consistency preserving view-based environ-
ments, which includes the processing of models and
views, as well as reacting to changes to preserve con-
sistency between them. We are not concerned with
improving the creation of such an environment by
assembling metamodels and specifying views or consis-
tency specifications for them. We also do not consider
performance benefits gained by the choice of a specific
programming language or hardware platform for their
realization. In addition, improvements to the usability,
e.g., by changing user interface designs, are not a focus
of this paper.

2 Background
In view-based model-driven development, task-specific
views allow developers to focus on the part of the sys-
tem that is relevant for the task [5]. This is especially
relevant for the development of large multi-domain sys-
tems where many different models are used. Since the
different views show parts of the same system, they
need to be kept consistent when changes are made.
The process of generating changes on views or models
as a reaction to changes on other views or models is
called change propagation.

There are two main approaches to consistency
preservation in view-based environments: synthetic
and projective [5]. With the synthetic approach,
changes on a view are directly propagated to all re-
lated views. In contrast, with the projective approach,
views are generated from underlying models, to which
the changes are propagated. While the first approach
suffers from a quadratic number of consistency rules be-
tween the views, the difficulty of the second approach
lies in assembling the underlying metamodel.

While a single, redundancy-free metamodel would
reduce consistency preservation to the change propa-
gation between the views and the model [1], it is quite

https://orcid.org/0000-0002-1751-1291
https://orcid.org/0009-0001-5775-2225


complex to define. As a solution, multiple, partially
redundant metamodels can be used, requiring explicit
consistency preservation rules between them, which
propagate changes between the models [8]. For change
propagation, both between the views and the models
and between the models, model deltas should be used
[4]. Instead of using the propagated deltas to update
the states of the models, it is also possible to store the
models as a sequence of deltas, from which the model
state can be reconstructed [6]. Applying changes to
a model is then reduced to appending the respective
model deltas to the stored delta sequence of the model.

Although processing the changes incrementally
through the entire consistency preserving view-based
environment avoids the performance problems of state-
based model transformations, it introduces a number
of performance-critical mechanisms, which we discuss
in this paper. Our work is related to the performance
of model transformations in general, which has been
investigated, e.g., by Amstel et al. [3], who compared
the performance of three major model transformation
engines.

3 Challenges
We have identified four performance challenges for
consistency preserving view-based environments that
utilize model deltas. They are part of the challenges
of collaborative environments, which are already dis-
cussed elsewhere [2]. We therefore focus on challenges
specific to the use of model deltas, consistency specifi-
cations, view generation, and change propagation.

3.1 Derivation of Model States
Working with model deltas instead of model states
provides several benefits, e.g., the ability to use in-
cremental analyses and a reduction in the amount of
data needed to update versions. Instead of providing
the complete new version, only the changes between
the versions have to be applied. While incremental
analyses work with model deltas, humans and analyses
working on the whole model cannot. Developers could
directly interact with models in the form of deltas,
but that representation is not useful, as the used delta
language removes the domain-specific constructs. This
requires the derivation of complete model states.

In order to improve the performance of the creation
of model states, we propose to use a model cache, which
applies the model deltas to derive a model state. The
model cache can be updated with new deltas to reflect
changes on the delta sequence. An additional opti-
mization for the generation of model states is the use
of effective change sequences, i.e., a change sequence
that is admissible [9] and minimal, thus there exists
no change sequence that is shorter and still admissible.
Such a sequence can be computed by deriving changes
between a model state and an updated model state [9].
Since a model state may be used to derive a view, this
optimization also affects the view generation process.

3.2 Consistency Specifications
While consistency preservation works with model
deltas and not model states, it still needs the model
state for requests about existing model elements. The
existing model elements may influence the result of
executing the consistency specifications, e.g., because
a corresponding element already exists and is updated
instead of being newly created. An example is a Java
class that implements a UML class description. A
change of the name of the UML class should lead
to a change of the name of the Java class. Because
of this, model caches are also useful for consistency
preservation.

This challenge can be seen as a special case of the
challenge mentioned in Subsection 3.1. While the
derivation of model states is used for developers work-
ing with the consistency preserving environment, this
challenge is inherent to the environment itself, inde-
pendent of its developers. Besides the model state,
optimizations regarding the physical representation
of the information may also be useful. One example
of an optimization could be to store model elements
that were created by a consistency specification with
a link to the model element that triggered the con-
sistency specification resulting in the model element
creation. This link will most likely be used once one
of the elements is modified and the corresponding one
has to be modified too to keep them consistent. An
additional challenge is the orchestration of consistency
specifications, which is discussed in [7].

3.3 View Generation
View generation transformations are used to create
views on the underlying models of the system on-
demand, i.e., when a user of the view-based environ-
ment requests it. As a consequence of changes on a
view, the underlying models will receive changes as
well. If other views were generated from the same
models, there might be the need to update these views
as well. Possible reasons for this could be that a user
of one of these views wants to see the newest state of
the models or that there are conflicting changes on the
view, which need to be merged with the changes on
the models first. In the first case, it would be enough
to re-generate the view from the models, discarding
the old state. However, in the second case, this would
overwrite the changes already made on the view.

While not a good solution for all required cases,
also performance-wise the re-generation of views is
not preferable. Even for small changes to the un-
derlying models, the entire state of the view would
have to be re-computed with possibly expensive trans-
formations. As an example, a developer could have
created a view, showing the internal dependencies of
a large software system. In the view, they notice an
unnecessary dependency and create another view to
remove the dependency. To verify that the dependency
was successfully removed and continue inspecting the



remaining dependencies, the developer updates the
view showing the dependencies. If the view update
mechanism would have to re-generate the view, a new
dependency analysis on the complete system would be
necessary.

Instead of re-generating the views entirely, we there-
fore believe it would be beneficial to update the views
incrementally. In the example, it would then be enough
to analyze the dependencies of the changed artifact
and remove the dependency from the view. The in-
cremental updates on the views can be represented as
view deltas, in the same way as model deltas repre-
sent changes on models. Of course, this comes with
requirements for the specification language of the view
generation transformations, which must support the
transformation of model deltas to view deltas, in addi-
tion to the generation of view states.

The generation of view states is still required for
creating a new view without an existing view state.
However, since models can be stored as deltas, as
described in Section 2, we believe it is possible to use
the same techniques for this. One possibility would
be to replay the stored model deltas and execute the
transformation of the model deltas to view deltas to
generate the view state. To avoid having to replay
the complete change history of the models, techniques
described in Subsection 3.1 can be used to minimize
the delta sequence.

3.4 Change Propagation
The consistency preservation interacts with the models
in the view-based environment, e.g., by modifying ar-
tifacts in the same way as the developer. Additionally,
the consistency preservation needs the models to not
be changed while it is applied. The reason for this
is that the consistency preservation may end up in
an undefined state, if the models are updated while
the consistency preservation is running. Because of
this challenge, the models have to be locked, while the
consistency preservation is applied. An example for an
undefined state is the modification of the imports of a
class by the consistency specification, concurrently to
the modification of class names by a developer. The
classes, retrieved by name by the consistency preserva-
tion, may have their names swapped by the developer,
which leads to the correct application of the consis-
tency preservation but with an incorrect result.

This locking can, e.g., be done with a view that is
generated for the consistency preservation. This modi-
fied view can be automatically merged with the version
of the model the consistency preservation was applied
to, but may need user interaction to resolve conflicts
with changes that have occurred in the meantime.

To avoid unnecessarily locking a whole model or
even multiple models, slicing techniques could be ap-
plied. The model slices produced by such techniques
can then be used to only lock parts of the models, and
thus enable the modification of the non-locked model

parts concurrently to the application of the consistency
specification. This avoids the generation of specific
views for the consistency preservation application and
additionally reduces the needed resources, because po-
tentially computationally expensive merges become
unnecessary.

4 Conclusion
We outlined performance challenges for consistency
preserving view-based environments and sketched our
ideas to overcome them. The list of challenges we
discussed in this paper is by no means complete. Thus,
for future work, further challenges should be investi-
gated, and prototypical implementations of our ideas
should be evaluated regarding their actual performance
improvements. If our ideas turn out to improve perfor-
mance, they may enable case studies on an industrial
scale, thus paving the way for the industrial application
of consistency preserving view-based environments.

References
[1] C. Atkinson, D. Stoll, and P. Bostan. “Ortho-

graphic software modeling: a practical approach
to view-based development”. In: ENASE. Springer.
2008, pp. 206–219.

[2] I. Mistrík et al. Collaborative software engineering:
challenges and prospects. Springer, 2010.

[3] M. van Amstel et al. “Performance in Model Trans-
formations: Experiments with ATL and QVT”. In:
Theory and Practice of Model Transformations.
Ed. by J. Cabot and E. Visser. Lecture Notes in
Computer Science. Springer, 2011, pp. 198–212.

[4] Z. Diskin, Y. Xiong, and K. Czarnecki. “From
State- to Delta-Based Bidirectional Model Trans-
formations: the Asymmetric Case”. In: JOT 10
(2011), 6:1.

[5] C. Atkinson, C. Tunjic, and T. Moller. “Funda-
mental Realization Strategies for Multi-view Spec-
ification Environments”. In: EDOC. 2015, pp. 40–
49.

[6] A. Yohannis, D. Kolovos, and F. Polack. “Turning
models inside out”. In: CEUR Workshop Proceed-
ings 1403. 2017, pp. 430–434.

[7] J. Gleitze, H. Klare, and E. Burger. “Finding a
universal execution strategy for model transforma-
tion networks”. In: FASE. Springer International
Publishing Cham. 2021, pp. 87–107.

[8] H. Klare et al. “Enabling consistency in view-
based system development—the vitruvius ap-
proach”. In: JSS 171 (2021), p. 110815.

[9] J. W. Wittler, T. Saglam, and T. Kühn. “Eval-
uating Model Differencing for the Consistency
Preservation of State-based Views”. In: JOT 22.2
(2023), 2:1–14.


	Introduction
	Background
	Challenges
	Derivation of Model States
	Consistency Specifications
	View Generation
	Change Propagation

	Conclusion

