
Software engineering, research software and requirements engineering

Stephan Druskat1, Michael Felderer1,2, and Carina Haupt1

1German Aerospace Center (DLR), Institute for Software Technology, {12489 Berlin, 51147
Cologne}, Germany

2University of Cologne, Department of Mathematics and Computer Science, 50923 Cologne,
Germany

{stephan.druskat,michael.felderer,carina.haupt}@dlr.de

Abstract

Research software is developed with aims and in con-
texts that differ from other software, by individuals
who are often not trained software engineers. Further-
more, research software projects often suffer from re-
source scarcity, but produce artifacts that are crucial
for research and require software engineering. These
circumstances have an impact on how software engi-
neering activities are performed in research contexts.
This holds in particular for requirements engineering,
which plays a crucial role for the success of traditional
software engineering projects. In this paper, we dis-
cuss the relationship between research software and
requirements engineering. For that purpose, we also
reflect on research software engineering and its rela-
tionship to software engineering research. Closer col-
laboration between software engineering research and
research software engineering creates opportunities for
knowledge exchange and better research software en-
gineering practice, and interesting new research ques-
tions for software engineering research. This is true
also for requirements engineering, where lightweight
methods are required, depending on the type of re-
search software developed.

1 Introduction

Research in academia and industry to a great extent
relies on software that enables or supports the research
process. In many cases, this software is research soft-
ware: software that is either created during the re-
search process itself, or developed specifically for a
research purpose [6]. The main aim of research soft-
ware is creating and validating knowledge, which sets
it apart from other types of software such as business
software. As such, software today is a ubiquitous and
essential element of academic and industrial research.

Originally, however, research software was not con-
sidered a relevant object of software engineering. The
NATO Software Engineering Conference in Garmisch
in 1968 focused on software engineering of mission-
critical business and embedded software. Signifi-
cantly, the conference report excludes “researchers in

fields other than software engineering and computer
science” from the report’s primary audience as a group
that “need[s] an understanding of the nature of soft-
ware engineering, although they are not themselves
working in the field.” [9, p. 9].

Despite this initial exclusion of scientific data pro-
cessing applications in computational science as a
principal object of software engineering, a new disci-
pline of Research Software Engineering has emerged.

This paper is structured as follows. Section 2 de-
fines and discusss the area of research software engi-
neering. Section 3 reflects on the relationship between
research software engineering and software engineer-
ing research. Section 4 discusses the role of require-
ments engineering for research software. Finally, Sec-
tion 5 concludes this paper.

2 Research Software Engineering

Broadly speaking, research software engineering1 is
the use of software engineering practices in research
applications. It is performed by Research Software
Engineers (RSEs) in many academic research disci-
plines, and to a lesser extent in industrial (research)
settings.

The RSE role is diverse across a number of dimen-
sions. While it generally covers traditional software
engineering as defined in the Guide to the Software
Engineering Body of Knowledge (SWEBOK), RSEs
apply the relevant practices in research-specific fields
such as modeling and simulation, data science, Dev-
Ops and ResearchOps, porting and optimisation, but
also traditional application development. They do
this across the whole spectrum of research disciplines
and often in inter-disciplinary contexts. In terms of
their working environment, RSEs can be part of a cen-
tral RSE team at a research institution, embedded in
a specific research group or project, or somewhere in
between.

One of the main challenges in research software en-
gineering is a lack of formal training in software en-
gineering. According to the 2022 International RSE

1See also GI Radar 351: Research Software.

{stephan.druskat,michael.felderer,carina.haupt}@dlr.de
https://gi-radar.de/351-research-software/


Figure 1: Dimensions of diversity in the Research Software En-
gineer (RSE) role (adapted from [2]).

Survey [7], the majority (~74%) of just over 1,000 self-
identifying RSEs worldwide do not have a background
in computer science. And they spend their time on a
number of other tasks beside software development,
see Figure 2. Approximately 42% of RSEs do not see
themselves as professional developers. Additionally,
many RSEs develop software for themselves rather
than for others, with only ~26% developing software
“mostly for other people”. Around half of the sur-
veyed population of RSEs also work outside of a ded-
icated RSE group, with a project bus factor of 1, in-
dicating that their knowledge will be lost once they
leave the project or institution.

There are, however, exceptions to this rule, notably
at our own institution, the German Aerospace Center
(DLR)2. At DLR, we have established a long-standing
community for RSEs through the Software Engineer-
ing Network, with representatives at all 61 institutes
and facilities. In addition, we provide guidelines for
software development [10], tooling infrastructure, and
trainings and consulting to research projects.

Figure 2: Time spent by RSEs across the world on different
tasks (Likert scale from 0 (None) to 10 (All the time)), from [7].

Another issue in research software engineering, gen-
erally, is the unique context in which research soft-
ware is developed. Research is often highly exper-
imental, which means that functional requirements
will often be unknown, or may change rapidly along-
side an experimental research process. As research
software aims to create knowledge in the first place,
verification and validation are difficult as long as this
knowledge is either non-existent or merely hypotheti-
cal, that is, until the end of a research cycle. Adopting

2https://rse.dlr.de

structured software engineering processes to the devel-
opment of research software may furthermore restrict
the required agility of the research process.

The research environment, especially in academic
research, also defines unique non-functional require-
ments. Research results must be reproducible, that
is, it must be possible for other to validate the knowl-
edge gained through computational research. This
has a strong impact on how research software must
be documented, but also how artifacts are treated.
The FAIR Principles for Research Software [3] require
that research software must be: Findable by humans
and machines; Accessible through standardised proto-
cols; Interoperable by way of data exchange or APIs;
Reusable, i.e., it can be understood, modified, built
upon or incorporated into other software. On top
of this, research software may be long-lived, but is
mainly developed by individuals with fixed-term con-
tracts: PhD students, post-docs, etc.

Taken together, all of these factors introduce ad-
ditional weights to the well-known trade-off between
time, resources, functionality and quality in software
engineering (Figure 3).

1

Functionality

ResourcesTime

Quality

Funding for RSE

Limited SE knowledge

Time-limited contracts

Processes restrict

Verification is difficult

FAIR principles

Requirements unknown

Research related

Figure 3: The additional weights in research software engineer-
ing in the trade-off between time, resources, functionality and
quality in software engineering.

3 Research software engineering and
software engineering research

With the rise of the RSE role in the UK, where
the first International Conference of Research Soft-
ware Engineers took place in 2016, Research Software
Engineering is becoming increasingly organized. Na-
tional or multinational RSE associations have been
founded in the UK, the Netherlands, Germany, Bel-
gium, the Nordics, Australia and New Zealand, the
US, and in Denmark. Of these, the UK, German,
Australian and New Zealand, and US associations run
annual national RSE conferences. The associations
play a pivotal role in establishing the RSE role in
their respective contexts, building communities, orga-
nizing knowledge exchange and training, and building
bridges to other communities, including the software
engineering research community.

The RSE and software engineering research (SER)
communities have a lot to gain from working together
closely. On the one hand, research software is a critical
artifact that requires software engineering. SER can

https://rse.dlr.de/


provide state-of-the-art software engineering knowl-
edge to the RSE community. Examples for this are
automated metamorphic testing of software that has
no clearly defined test oracles [8], or agile and contin-
uous software development processes.

On the other hand, RSE can provide interesting
new research questions to SER that reflect unique
properties of research software, e.g., around the or-
ganization of software-centric research processes, re-
quired skills and educational formats for RSEs, qual-
ity assurance for and maturity levels of research soft-
ware, suitable business models for open source re-
search software, etc.

It is therefore important to note promising new
initiatives forming at the intersection between both
fields. One of these is the Gesellschaft für Infor-
matik’s SIG “Research Software Engineering”3 as part
of the section Software Engineering. This group
has spawned several working groups for, e.g., mak-
ing research software accessible for different activi-
ties through categorization, developing research pro-
grammes for “RSE Research” (see also [5]), or the
creation of a guideline to implement research software
engineering guidelines for research institutions.

Another effort is the Dagstuhl Seminar “Research
Software Engineering: Bridging Knowledge Gaps”4,
that takes place from 14–19 April 2024 and brings to-
gether experts from RSE and SER to work on improv-
ing the knowledge exchange between the two fields and
foster further collaboration. One of the main topics of
this seminar will be the effective specification of the
requirements of research software in different applica-
tion and research disciplines.

And indeed, against the background established
in this article so far – where functional requirements
for research software may be unidentifiable, and non-
functional requirements are imposed by the research
context – it is interesting to look at the challenges and
possibilities of requirements engineering for research
software in more detail.

4 Research software and requirements
engineering

In research software engineering, reproducibility of re-
search results is key. This is relevant especially where
decisions that affect many people are made based on
the results of computational research. One recent ex-
ample of this is the modeling and simulation of pan-
demic development during the COVID-19 pandemic.

As a tool for risk management, requirements engi-
neering can help identify and mitigate risks, and re-
duce the likelihood of failures. Therefore it seems nat-
ural that in situations where research software is de-
veloped to create and validate the knowledge that un-
derpins important decisions, requirements engineering
plays an important role in the development of research

3https://fg-rse.gi.de
4https://dagstuhl.de/24161

software. While this is certainly true for tradition-
ally safety-relevant research software projects, e.g.,
in applied aeronautics and space research and other
engineering disciplines, or in medical research, state-
of-the-art requirements engineering processes from
software engineering research are not applied across
the board in research software engineering. Anec-
dotal evidence informally elicited by software devel-
opers from mostly university-based research software
projects points partially to a lack of knowledge about
requirements engineering as a process, partially to a
low priority of requirements engineering in the devel-
opment process due to conflicting incentives, and par-
tially to the ad-hoc implementation of “issue-based
requirements tracking”.

In other cases, requirements engineering is prac-
ticed informally or only in part. The research soft-
ware project HERMES5 develops a demonstrator for
continuous integration software that enables the au-
tomatic publication of FAIR research software with
rich metadata in long-term repository archives. The
project organized several workshops over the project
runtime. These included a kick-off meeting with key
stakeholders, as well as interactive workshops with
users where requirements elicitation and feedback
loops were closely paired with development sprints.
Some high-level requirements were also documented
in a concept paper early on in the development pro-
cess [4]. While requirements were frequently discussed
in project meetings, they were not formally managed,
analysed or traced.

There are multiple reasons why requirements en-
gineering is not applied everywhere in research soft-
ware engineering, of which some have already been
touched upon above: research projects often lack the
resources for professional research software engineer-
ing, and many RSEs are not trained software engi-
neers, much less trained requirements engineers. Ad-
ditionally, due to missing knowledge transfer between
software engineering research and research software
engineering, requirements engineering is often still un-
derstood as a documentation-heavy process that re-
quires waterfall development processes. And on top
of this, requirements engineering may generally not be
considered an option, based on the assumption that
especially functional requirements cannot be known
due to the experimental nature of the research in
which software is developed.

These latter assumptions disregard the fact that
not all research software is the same. Previous and
current classification efforts seem to suggest that, in-
deed, some types of research software may not lend
themselves easily to some highly formalized require-
ments engineering processes. These may include the
implementation of novel methods and models, or
early prototypes that are used only by individual
researchers. Others, however, are not dissimilar to

5https://software-metadata.pub

https://fg-rse.gi.de
https://www.dagstuhl.de/24161
https://software-metadata.pub


software applications developed in business contexts.
These may include proof-of-concept implementations,
and accepted methods and models that are used by
whole research communities or are adapted to new
research needs. And certainly, instrument or other
embedded software, as well as research platforms and
infrastructure can be submitted to even the more for-
mal established requirements engineering processes.

The above-mentioned assumptions also ignore the
fact that software engineering research has devel-
oped and continues to develop more modern and
lightweight requirements engineering processes that
support agile paradigms much better than traditional
processes. RSEs already often use collaborative de-
velopment and DevOps platforms such as GitHub
and GitLab, and would be well-placed to adopt re-
quirements engineering paradigms that leverage such
tooling. And vice versa, requirements engineering re-
search will also be inherently interested in trying to
tackle the specific challenges of research software en-
gineering, and pursue solutions that also take into ac-
count the non-functional requirements of research and
open science contexts.

Finally, there may be an opportunity to create
synergies from combining the documentation require-
ments for software from requirements engineering, and
the documentation requirements for research in gen-
eral. In the end, research software projects – and
research projects more generally – always work with
stakeholders, first and foremost the researchers them-
selves, but also research funders, politics and the gen-
eral public. They already document requirements in
project proposals and track them in research publi-
cations. There are also potentials for synergies with
respect to the type of software developed. The na-
ture of research software (in particular with respect
to research software that focuses on modeling, simu-
lation and data analytics) has similarities and syner-
gies with the development of machine-learning-based
software components - and in the future maybe also
with quantum-based software components - in indus-
try [1]: requirements are typically not-known up-
front and therefore testing heavily relies on random-
ization, exploration, runtime monitoring, and spe-
cific approaches like metamorphic testing [8]. Such
approaches are also essential for research software,
which therefore provides suitable evaluation contexts
for requirements engineering and testing of (indus-
trial) machine-learning-based software components.
Therefore, requirements engineering and testing for
research software has synergies with the respective ac-
tivities for industrial machine-learning-based software
systems.

5 Conclusion

Software is a critical artifact of research that requires
research software engineering. Research software en-
gineering and the RSE role, however, are highly di-

verse, and we currently do not know enough about ei-
ther. This makes RSE research necessary and presents
opportunities for new questions in software engineer-
ing research. Requirements engineering research in
particular can offer knowledge transfer to fill existing
gaps, and can develop solutions to the particular chal-
lenges of research software engineering. These could
build on the tools already available to RSEs, and har-
ness existing documentation processes in research.

Acknowledgments

SD acknowledges funding for HERMES (ZT-I-PF-3-
006) by the Helmholtz Initiative and Networking Fund
through the Helmholtz Metadata Collaboration.

References

[1] Jubril Gbolahan Adigun et al. “Collaborative
Artificial Intelligence Needs Stronger Assur-
ances Driven by Risks”. In: Computer 55.3
(2022), pp. 52–63.

[2] Neil Chue Hong. Is Research Software Engineer-
ing Coming of Age? Presentation. Sept. 2023.
doi: 10.6084/m9.figshare.24078054.v5.

[3] Neil P. Chue Hong et al. FAIR Principles for
Research Software (FAIR4RS Principles). Tech.
rep. Research Data Alliance (RDA), May 2022.
doi: 10.15497/RDA00068.

[4] Stephan Druskat et al. “Software Publications
with Rich Metadata: State of the Art, Auto-
mated Workflows and HERMES Concept”. In:
arXiv (2022). doi: 10 . 48550 / arXiv . 2201 .

09015.

[5] Michael Felderer et al. Toward Research Soft-
ware Engineering Research. Tech. rep. Zenodo,
June 2023. doi: 10.5281/zenodo.8020525.

[6] Morane Gruenpeter et al. Defining Research
Software: A Controversial Discussion. Tech.
rep. Zenodo, Sept. 2021. doi: 10.5281/zenodo.
5504016.

[7] Simon Hettrick et al. International RSE Sur-
vey 2022. Zenodo. Aug. 2022. doi: 10.5281/
zenodo.7015772.

[8] Upulee Kanewala, Anders Lundgren, and James
M. Bieman. “Automated Metamorphic Testing
of Scientific Software”. In: Software Engineering
for Science. Chapman and Hall/CRC, 2016.

[9] Peter Naur and Brian Randell. Software Engi-
neering: Report of a Conference Sponsored by
the NATO Science Committee, Garmisch, Ger-
many, 7-11 Oct. 1968, Brussels, Scientific Af-
fairs Division, NATO. 1969.

[10] Tobias Schlauch, Michael Meinel, and Carina
Haupt. DLR Software Engineering Guidelines.
Tech. rep. Zenodo, 2018. doi: 10.5281/ZENODO.
1344612.

https://doi.org/10.6084/m9.figshare.24078054.v5
https://doi.org/10.15497/RDA00068
https://doi.org/10.48550/arXiv.2201.09015
https://doi.org/10.48550/arXiv.2201.09015
https://doi.org/10.5281/zenodo.8020525
https://doi.org/10.5281/zenodo.5504016
https://doi.org/10.5281/zenodo.5504016
https://doi.org/10.5281/zenodo.7015772
https://doi.org/10.5281/zenodo.7015772
https://doi.org/10.5281/ZENODO.1344612
https://doi.org/10.5281/ZENODO.1344612

	Introduction
	Research Software Engineering
	Research software engineering and software engineering research
	Research software and requirements engineering
	Conclusion

