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Abstract

Static analyses are essential to ensure the efficiency
and security of software. They face challenges as
we use ever more and ever more complex software.
We address these challenges by enabling collaborative
analyses composed of small, maintainable modules.

In this thesis, we propose the blackboard analysis
architecture that allows independent modules to col-
laborate using a central data store. This architecture
is framework-independent, applicable to a broad range
of static analyses regardless of their implementation
paradigm, and allows for modular soundness proofs.

Using four case studies and an extensive evaluation,
we show how the blackboard analysis architecture al-
lows improving the soundness, precision, and scala-
bility of static analyses and fosters the exploration of
trade-offs between these qualities.
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2 Introduction

With the world around us increasingly driven by comput-
ers, the efficiency and security of software is of paramount
importance. Static analysis is an important technique to
understand software, improve its efficiency, find bugs, and
identify malware. However, it faces challenges in complex
programming-language features, such as reflection, in com-
plex analysis problems, and in complex trade-offs between
soundness, precision, and scalability. In the past, static
analyses were mainly implemented in a monolithic fashion
and tailored to a specific task. This approach does not
scale to the increasing requirements static analyses face in
ever-growing complex software systems.

Complex analysis problems consist of many separate
yet interdependent sub-problems (cf. Figure 1 showing
sub-problems of a purity analysis). Modular static analy-
ses, thus, decompose analyses into sets of small individual
modules. These modules are easier to develop and main-
tain than monolithic analyses, and modules developed by
different domain experts can be composed to face the men-
tioned challenges.

We thus propose the blackboard analysis architecture
for modular, collaborative static analyses. In this architec-
ture, modules are fully independent of each other yet col-
laborate closely to solve complex analysis problems. Com-
pared to prior attempts at modularizing static analyses,
our architecture is applicable to a broad range of analyses
and does not require adhering to a specific implementation
paradigm.
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Figure 1: Dependencies Between Sub-problems for a
Purity Analysis

In this thesis, we make three central contributions:
1. We propose a novel architecture for modular, collab-

orative static analyses. We show how this architecture en-
ables modular static analyses in a framework-independent
manner and how it enables modular, reusable soundness
proofs of composed static analyses.

2. We present four case studies of modular static anal-
yses for intermediate representations, call graphs, im-
mutability analysis, and purity analysis.

3. We perform an extensive evaluation showing that our
architecture is applicable to a broad range of static anal-
yses and supports fine-tuning the soundness, precision,
and scalability of analyses. We also evaluate how analysis
scalability is affected by automatic parallelization, special-
ized data structures, and different strategies for scheduling
analysis tasks, which are all enabled by modularization.

3 Blackboard Analysis Architecture

A framework for modular, collaborative static analyses
must fulfill several requirements for the representation of
analysis results, composability of analysis, and options to
initiate computation. We systematically derive these re-
quirements from case studies from a broad range of dis-
similar analyses. Based upon these requirements, we pro-
pose a novel architecture for modular static analysis that
is reminiscent of the blackboard architecture [1]: analyses
are split into small, maintainable modules that are inde-
pendent of each other, yet collaborate closely through a
central data store and coordinator, the blackboard. This
allows modules to be ignorant of each other yet exchange
data and work in an interleaved, collaborative manner.

We implement this architecture in the OPAL static
analysis framework1, where analysis modules consist of
a declarative specification and an implementation that is
often imperative in nature but not restricted by the ar-
chitecture [4]. In OPAL, the central blackboard provides
automated scheduling and parallelization for the analysis
modules. In addition, we provide RA2, an alternative im-
plementation of our architecture using reactive program-
ming to achieve semi-implicit parallelization of analysis

1https://www.opal-project.de
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execution with user-defined scheduling strategies [3].
Furthermore, we formally define the blackboard anal-

ysis architecture. Using this formalization, we prove that
the architecture allows soundness proofs for analyses to
be composed directly from soundness proofs of individual
analysis modules [6].

4 Case Studies

We present four case studies, each building upon the pre-
vious ones. Each case study advances the state of the art
in its respective area, outperforming prior works in terms
of soundness, precision, and/or scalability.

TACAI [7] is an intermediate representation based on
abstract interpretation. The basic analysis can be ex-
tended by optional modules that refine type information
for fields or the return values of methods. We show that
TACAI is configurable, computed efficiently, and provides
refined information that improves the precision of down-
stream analyses such as call-graph analyses.

Unimocg [5] is a novel architecture for call-graph anal-
yses. By decoupling the computation of type infor-
mation for local variables from the actual resolution of
call targets, Unimocg enables the reuse of call-resolution
modules across dissimilar families of call-graph analyses.
This enables consistently high sound support for complex
programming-language features. As an additional bene-
fit, further analyses, such as immutability analyses, can
benefit from the computed type information.

CiFi [8] is a system of four analysis modules for reasoning
about the assignability of fields and the immutability of
fields, classes, and types. CiFi can infer assignability and
immutability information for common programming pat-
terns such as lazy initialization and classes with generic
type parameters. This sets it apart from the previous
state of the art that could not reason about such pat-
terns and/or only check manually annotated immutability
information instead of automatically inferring them.

OPIUM [2] is a family of three analyses that reason
about method purity, i.e., whether methods behave in a
deterministic manner and free of side effects. They are
efficient and precise and provide more fine-grained purity
information than the previous state of the art. OPIUM’s
analyses have different precision/scalability trade-offs and
can be combined with various independent analyses to
fine-tune the analysis to users’ specific needs.

5 Evaluation

We thoroughly evaluated our architecture and case stud-
ies, making three core observations:

1. Our modular architecture supports the implementa-
tion of a broad range of static analysis kinds, as evidenced
by our case studies. The modularity of these analyses ben-
efits both end users and analysis developers by facilitating
experimentation with different trade-offs between sound-
ness, precision, and scalability.

2. Modular analyses implemented in OPAL improve
upon the respective state of the art w.r.t. precision and
soundness. We attribute this to the support for modular-
ity, fostering the implementation of simple modules that
improve precision by providing information that would

otherwise have to be over-approximated or improve sound-
ness by adding support for complex language features.

3. Our case-study analyses are on par with or outper-
form the respective state of the art, particularly due to
parallelization and specialized data structures. Schedul-
ing strategies can significantly impact execution time and,
thus, scalability.

6 Conclusion and Outlook

With this thesis, we laid the foundations for composing
arbitrary static analyses. This improves soundness, preci-
sion, and scalability and enables the exploration of trade-
offs between these qualities. Based on these foundations,
future collaborative analyses may incorporate different
traditional and novel analysis techniques, combining static
analyses with dynamic analyses or machine-learning-based
approaches. Modular analyses may also be able to bet-
ter analyze software implemented using multiple program-
ming languages by composing language-specific analysis
modules. Further research is also needed on how to opti-
mally compose and configure static analyses. Our archi-
tecture supports this by making analysis modules easy to
compose, exchange, and study.

References
[1] D. D. Corkill. “Blackboard Systems”. AI expert 6.9

(1991), pp. 40–47.
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