Empirical Assessment of Advantages and Disadvantages
of Model Transformation Languages

Stefan Hoppner, Institute of Software Engineering and Programming Languages, Ulm University, Germany
Matthias Tichy, Institute of Software Engineering and Programming Languages, Ulm University, Germany

1 Context

Model-driven software engineering envisages the use
of model transformations to evolve models. Model
transformation languages, are touted with many ben-
efits over general-purpose languages. However, most
of these claims have neither been substantiated nor in-
vestigated thoroughly. Moreover, they frequently lack
the contextual information required to critically as-
sess their merit or build meaningful empirical studies
around them.

2 Objective

The main objective of our work is to aggregate all nec-
essary data to set up proper evaluation and use this
data to asses the most prevalent claims about model
transformation languages empirically. We aim to pro-
vide evidence on whether those claims withstand rig-
orous empirical scrutiny. We further want to provide
a foundation of data upon which more empirical eval-
uation can be built.

3 Method

To address our objectives, we employ several research
methodologies. Initially, we use a structured litera-
ture review to determine the state of research and
what claims about quality attributes of MTLs are
propagated in literature. The results serve as a basis
for conducting semi-structured interviews to collect
qualitative data on relevant factors and co-founding
factors pertaining to the claims discussed. We quan-
tify the identified effects using structural equation
modelling and an online survey. Finally, we use repos-
itory mining and design science to collect and prepare
artefacts. The artefacts are used in two separate case
studies to empirically evaluate several MTL quality
attributes based on the previously identified factors.

4 Results & Contributions

Using the previouslz described methodologies we pro-
vide results and contributions five areas which build
on each other. In the following we give an overview
over each contribution area.

4.1 Claims and Evidence in Literature

Literature associates MTLs with 15 different qual-
ity attributes [1]. Most quality attributes are associ-
ated positively and negatively with MTLs highlighting
the intricate balance between useful abstractions and
drawbacks thereof. Moreover, we believe that a por-
tion of this variance can be attributed to the diverse

range of languages, each with their own unique trade-
offs between accentuating capabilities and accepting
drawbacks.

These results are contrasted by a bleak state of
evidence for claims made about the quality attributes.

More than 70% of all claims found in our litera-
ture review lack any form of substantiation. Much of
the evidence that is given stems from examples that
demonstrate the claimed advantage or disadvantage
in a single case. We were only able to identify four
studies that use empirical methods. Moreover, only
one of these studies focused on model transformation
languages as the central artefact of evaluation.

Another concerning observation is, that citations
are often used to reference other works that make sim-
ilar claims rather than literature that provides proper
substantiation.

4.2 Factors for Advantages and Disad-
vantages

We identified six main influence factors, namely GPL
Capabilities, MTL Capabilities, Tooling, Choice of
Language, Skills and Use Case [6]. Each factor com-
prises several sub-factors.

The influences of all factors are split into two
groups, direct influences and context influences. We
found that GPL Capabilities, MTL Capabilities and
Tooling have a direct influence on perceived quality
attributes of MTLs and Choice of Language, Skills
and Use Case define context that moderates the type
and strength of influence of the other factors.

The effectiveness of MTLs depends on their capa-
bilities, which can vary based on the language in ques-
tion and whether the abstractions provided are useful
for the specific case, i.e., bidirectional support is only
useful for bidirectional transformation cases. Addi-
tionally, the developer’s skill plays a crucial role too.
If they are unable to effectively utilise the capabilities
of a language due to inexperience or lack of knowl-
edge, none of the advantages might apply. Finally,
the tooling available for MTLs can either enhance or
impede their capabilities. This again depends on the
language and use case as tooling may or may not exist.

4.3 Quantification of Influence Weights of
Factors

Contrary to hypothesis formulated based on our pre-
vious results, moderation effects are nearly as nuanced
as the direct influences of MTL Capabilities. The size
of meta-models, for example, moderates the influence
on Comprehensibility and Fase of Writing. But the



strength of this moderation differs immensely between
different MTL Capabilities. Overall, we found the
transformation size to be the most important moder-
ating factor.

The insights gained from our quantitative work [4]
help to provide clear suggestions on further actions
for language developers, researchers & developers to
take. For further language development, we suggest
to focus on the development of transformation specific
reuse mechanisms. This is because of the surprisingly
high importance of reuse mechanisms for several MTL
quality attributes. We also believe that such features
provide a unique selling point for MTLs.

For further empirical evaluation, we suggest inves-
tigating the cost of reimplementing MTL abstractions
in general purpose languages. Most prominently the
cost of manually handling traces. This also includes
an assessment of how much tracing is required in real-
world use cases to allow for a proper cost-benefit anal-
ysis.

4.4 The Suitability of ATL for Expressing
Model Transformations

By quantitatively investigating ATL transformations
we draw a number of conclusions on the suitability
of the language for writing model transformations [2].
First, over half of the complexity of a transformation
resides within bindings, meaning that over half of the
effort spent is spent on assigning values to the output
model. This leads us to draw the a similar conclusion
as Hebig et al. [3]. Conditioning on types, as ATL
does it, provides a well suited abstraction for model
transformation development.

We also found, that the majority of bindings in
ATL map one attribute of an input model element
to one attribute of an output model element. This
suggests that the main effort in writing ATL transfor-
mations stems from defining how the output should
look like.

Overall our results show, that ATL provides several
useful abstractions and shifts the focus of transforma-
tion development onto the definition of transforma-
tion logic. Only little complexity resides in describing
how the transformation should be executed or how
elements should be selected. Therefore, the expres-
siveness of ATL for the investigated transformations
is high.

4.5 A Historical Perspective on ATL Ver-
sus Java Based on Complexity and
Size
When comparing the complexity of the transforma-
tions written in Java SE14 and Java SE5 [5], we found
that both the WMC and lines of code are greatly re-
duced in Java SE14. However, no significant changes
in the number of required words exist. We attribute
this to newer language features in Java that reduce
the amount of explicit control flow one has to write.

These features enable a more functional, data flow
driven style of coding which leads to fewer, but much
wider lines of code.

Surprisingly the distribution of complexity over the
different transformation aspects reveals only slight im-
provements in Java SE14. In both language versions
large portions of the code are overhead produced by
manually implementing tracing, model traversal and
setup.

We can also again highlight the overhead entailed
when using Java. While in ATL over half of all code
is used for defining bindings, in Java it is only about
25% as much.

Overall our results show, that new language fea-
tures in Java SE14 now enable a style of writing trans-
formations with significantly less cyclomatic complex-
ity. At the same time, it is still impossible to hide
those transformation aspects that ATL abstracts away
from properly.

5 Conclusion

Our work contributes much needed systematisation
and empirical ground work to the body of knowledge
on model transformation languages.

We demonstrate that empirical evaluation of model
transformation languages is feasible and necessary.
Efforts to provide more empirical substance need to be
undergone, and lacklustre language capabilities and
tooling need to be improved. The results of this the-
sis can provide a basis for these further actions.

References

[1] S. Gotz, M. Tichy, and R. Groner. “Claimed advantages
and disadvantages of (dedicated) model transformation
languages: a systematic literature review”. Software and
Systems Modeling 20.2 (2021), pp. 469-503.

[2] S. Gotz, M. Tichy, and T. Kehrer. “Dedicated Model
Transformation Languages vs. General-purpose Lan-
guages: A Historical Perspective on ATL vs. Java”. Pro-
ceedings of the 9th International Conference on Model-
Driven Engineering and Software Development - Vol-
ume 1: MODELSWARD, INSTICC. SciTePress, 2021,
pp. 122-135.

[3] R. Hebig et al. “Model Transformation Languages Un-
der a Magnifying Glass: A Controlled Experiment with
Xtend, ATL, and QVT”. Proceedings of the 2018 26th
ACM Joint Meeting on FEuropean Software Engineering
Conference and Symposium on the Foundations of Soft-
ware Engineering. ESEC/FSE 2018. 2018.

[4] S. Hoppner and M. Tichy. “Traceability and reuse mech-
anisms, the most important properties of model transfor-
mation languages”. Empirical Software Engineering 29.2
(2024), pp. 1-55.

[5] S. Hoppner, M. Tichy, and T. Kehrer. Contrasting Dedi-
cated Model Transformation Languages vs. General Pur-
pose Languages: A Historical Perspective on ATL ws.
Java based on Complexity and Size: Supplementary Ma-
terials. 2021.

[6] S. Hoppner et al. “Advantages and disadvantages of (ded-
icated) model transformation languages”. Empirical Soft-
ware Engineering 27.6 (2022), p. 159.



	Context
	Objective
	Method
	Results & Contributions
	Claims and Evidence in Literature
	Factors for Advantages and Disadvantages
	Quantification of Influence Weights of Factors
	The Suitability of ATL for Expressing Model Transformations
	A Historical Perspective on ATL Versus Java Based on Complexity and Size

	Conclusion

