
Cooperative Android App Analysis

Felix Pauck, SonarSource, Suttner-Nobel-Allee 3, 44803 Bochum, Germany

Reference
[4] Felix Pauck. Cooperative Android App Analy-
sis. Dissertation, Paderborn University, 2023, DOI:
10.17619/UNIPB/1-1698

Supervisor: Prof. Dr. Heike Wehrheim

Date of Defense: 24.03.2023

Abstract

In this summary, the three main contributions of the
thesis ”Cooperative Android App Analysis” [4] are
presented.

The first contribution proposes the cooperative
analysis approach. The centerpiece of this approach
is the AQL (Android App Analysis Query Language)
– a domain specific query language. It allows for-
mulating (AQL-)queries in order to interact with ar-
bitrary analysis tools. As counterpart AQL-Answer
come into play, which are able to universally but well-
structured embody any kind of analysis result. The
second contribution uses the AQL to define repro-
ducible benchmarks that can be used to automatically
evaluate analysis tools on such. Various benchmarks
are then used in the third contribution to conduct a
thorough evaluation of 13 Android taint analysis tools.

Please note, in the context of the thesis, the coop-
erative analysis implementation is tailored to Android
taint analysis, however, the concept can be applied to
any kind of analysis.

Introduction. For a while Android is the most-
used mobile operating system. Smartphones using
it often deal with sensitive and security-critical in-
formation, such as contact data or GPS locations.
Hence, this data must be protected against attacks.
In this regard, there is an arms race taking place be-
tween attackers, trying to find new ways of exfiltrating
data, and defenders, who develop novel defensive in-
struments. One such instrument, that is steadily im-
proved, is program analysis. To keep up in the race,
we purpose the concept of cooperative analysis, that
allows defenders to quickly and precisely react on new
analysis challenges.

Cooperative Analysis To build a cooperative
analysis we want to interact with arbitrary analysis
tools and bring together their (often complementary)
features. To intuitively and briefly describe the con-
cept, let us take a look at the example depicted in
Figure 1. Depicted is one Android app with two com-
ponents (Main- and TargetActivity). Both com-
ponents implement a method (onCreate(...)), that
is executed once the respective component is trig-
gered. The content of these methods is described next.

The source (getDeviceId()) statement accesses the
IMEI number of an device allowing to identify and
track an individual, hence, it should not be leaked.
Its counterpart, the sink (sendTextMessage(...)),
allows sending a short message to a potential adver-
sary. In this example, a so-called taint flow, that leaks
the sensitive information, can be found between these
two. It uses inter-component communication (ICC)
to do so – the data extracted in one component is
transferred to another that leaks it.

To build a cooperative (taint) analysis that is able
to analyze this scenario, we employ the AQL (An-
droid App Analysis Query Language), a domain spe-
cific query language that allows us to interact with
arbitrary analysis tools. With the AQL, we can for-
mulate the following exemplary (AQL-)query:

Flows IN App(’ex.apk’) ?

Once it is processed, e.g., by the AQL-System [4, 3],
we get an AQL-Answer that potentially reveals the
taint flow. Therefore, the AQL-System must have
been configured with an analysis tool that is able to
directly find taint flows that involve ICC. Often such
a tool is not available. So let us assume the query is
answered by FlowDroid [1], the most advance and
broadly used Android taint analysis tool. It gives us
the partial taint flows 1. and 3. (see Figure 1). To
detect the whole taint flow, we must also identify the
ICC flow (2.) between. Hence, we formulate another
query:

Flows IN App(’ex.apk’) FEATURING ’ICC’ ?

This may now trigger a different tool that is able to de-
tect ICC flows. These two queries can now be brought
together to build a simple but effective cooperative
analysis by asking this query:

1 CONNECT [

2 Flows IN App(’ex.apk’) ?,

3 Flows IN App(’ex.apk’) FEATURING ’ICC’ ?

4 ] ?

The inner queries are answered as before by two indi-
vidual analysis tools and the CONNECT operator (imple-
mented in the AQL-System) that is surrounding both

MainActivity

onCreate(...)

15: startActivity(...)

TargetActivity

onCreate(...)

 7: getStringExtra(...)

Source

Sink

10: getDeviceId()

12: sendTextMessage(...)IntentIntentIntent

Intent filterIntent filterIntent filter

1. 2. 3.

Figure 1: Illustration of the running example



queries brings together the respective AQL-Answers.
In our example, it stitches the detected taint flows to-
gether with the ICC flow, such that the whole taint
flow becomes visible.

This example just provides a glimpse at the possi-
bilities the AQL and the cooperative analysis concept
offer. The thesis [4] itself allows taking a look at the
full picture.

Reproducible and Automatic Benchmarks.
With the AQL at hand, we can formulate the ground
truth of a benchmark in form of expected AQL-
Answers. This offers the advantage, that the ground
truth is automatically comparable to actual answers
given by tools or cooperative analyses. Furthermore,
a ground truth specified that way is more precise than
the definitions that were frequently used in the past.
For example, often it was only defined that a certain
number of taint flows can be found but not which taint
flows precisely. By comparing actual and expected
AQL-Answers we can count true/false positive and
negative findings. These countings can than be used
to compute metrics such as precision, recall and F-
measure, that allow us to competitively evaluate and
compare (cooperative) analyses.

This concept of reproducible and automatic bench-
marks was first presented in a reproducibility
study [6]. Then used in the concept of cooperative
analysis [7]. Some of the results determined there will
be presented in the next section.

Evaluation. This benchmarking concept has been
used to conduct a thorough evaluation of 13 stan-
dalone analysis tools as well as six cooperative anal-
yses that employ in total 32 analysis tools, including,
e.g., a newly developed static Android app slicer [8].
To do so, various benchmarks were used, imprecise
ground truth definitions were refined and a whole
new real-world malware benchmark, namely Taint-
Bench [2] was developed. All details can be found
in the thesis. In this summary, we want to provide a
preview, therefore, we show that the standalone tool
FlowDroid can be improved in various areas once it
is combined with other tools in a cooperative analysis.
In that sense, it is possible to add (1) advanced ICC
as well as inter-app communication (IAC) capabili-
ties, (2) the ability to analyze native code elements,
and (3) to resolve reflection prior to analysis. Ta-
ble 1 entitles the improvement with numbers for the
DroidBench [1] micro benchmark.

Conclusion This summary exemplifies what is pre-
sented in-depth in the thesis: cooperative analyses are
able to outperform standalone analysis tools precision-
wise, and allow adding analysis capabilities with re-
spect to certain analysis challenges. With repro-
ducible and automatic benchmarks, these facts could
be measured. In conclusion, cooperative analyses ap-
pear to be an adequate instrument to win the arms

Table 1: FlowDroid VS. Cooperative Analysis
DroidBench Flow- Coop.

Category Droid1 Ana. ∆
IAC 0.000 0.625 ▲ 0.625
ICC 0.348 0.727 ▲ 0.379
Native 0.000 0.889 ▲ 0.889
Reflection 0.200 0.800 ▲ 0.600

1: FlowDroid (2.9.0)

race between attackers and defenders.
The thesis’ artifact which includes all newly devel-

oped tools, results and further material (e.g., bench-
marks and reproduction instructions) is publicly avail-
able at Zenodo [5].

References

[1] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bar-
tel, J. Klein, Y. L. Traon, D. Octeau, and P. D.
McDaniel. Flowdroid: precise context, flow, field,
object-sensitive and lifecycle-aware taint analysis
for android apps. In Proceedings of PLDI, 2014.
ACM, 2014.

[2] L. Luo, F. Pauck, G. Piskachev, M. Benz,
I. Pashchenko, M. Mory, E. Bodden, B. Her-
mann, and F. Massacci. Taintbench: Automatic
real-world malware benchmarking of android taint
analyses. Empir. Softw. Eng., 27(1):16, 2022.

[3] F. Pauck. Aql-system (last accessed 27.04.2024).
https://FoelliX.github.io/AQL-System.

[4] F. Pauck. Cooperative Android App analysis. PhD
thesis, Paderborn University, Germany, 2023.

[5] F. Pauck. Cooperative Android App Analysis
(Thesis Artifact). PhD thesis, Paderborn Univer-
sity, Jan. 2023.

[6] F. Pauck, E. Bodden, and H. Wehrheim. Do an-
droid taint analysis tools keep their promises? In
Proceedings of the 26th ESEC/FSE, 2018. ACM,
2018.

[7] F. Pauck and H. Wehrheim. Together strong: co-
operative android app analysis. In Proceedings of
ESEC/FSE, 2019. ACM, 2019.

[8] F. Pauck and H. Wehrheim. Jicer: Simplifying
cooperative android app analysis tasks. In Pro-
ceedings of the 21st SCAM, 2021. IEEE, 2021.


