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Large Language Models (LLMs) have opened up
unforeseen new possibilities. They deliver amazing re-
sults for complex text-based tasks for which no satis-
factory automated solution was available before. This
is even more astonishing as they just calculate the
most probable subsequent token, given a sequence of
tokens. This is also true for software development
support: There are various software engineering task
for which LLMs show potential [1, 5]. In this paper,
we discuss the potential and current shortcomings of
LLM-based approaches for selected Software Reengi-
neering tasks with a focus on language translation. All
experiments reported in the following were performed
with GPT-4.

1 Language Translation

Language translation has been performed based on
abstract syntax trees (AST) for decades. A typical use
case for language translation are legacy applications
from banking or insurance domains that often need to
be translated from COBOL to Java and migrated to
a new platform. This is necessary as the old hardware
systems and compilers can no longer be maintained,
and as it is increasingly hard to find people who have
the required competencies to maintain that kind of
code. The problem of these AST-based approaches is
that the resulting code does not look and feel like real
Java code, as it does not use the idioms of the target
language, but rather stays close to the style of the
original language. For example, when transforming
from COBOL to Java, classes will be used. However,
they will not be used in a natural way, but rather as
containers for the respective code.

In contrast to that, LLMs have the capability to do
a different way of translation, as they take more con-
text into account. These models can leverage knowl-
edge of similar code of the target language that they
have seen during training. In the best case, they “rec-
ognize” an algorithm and translate it to the same algo-
rithm in the target language. This works particularly
well for often-used algorithms like sorting and search-
ing. However, things look different for custom code.
And from our experience, this heavily depends on the
languages used: The more code in a language was con-
tained in the training data, the better it works. As
an example, the Python capabilities of current LLMs
often excel other languages.

As a concrete example, let us discuss the results of
some experiments on C to Rust translation using an
LLM. Let us first look at the advantages of the LLM-
based approach: The code from GPT-4 looked much
better (more Rust-like) than code that was trans-
lated using c2rust1, a classical AST-based tool for this
task. This is because c2rust does a 1:1 translation.
That means that all code is wrapped in unsafe blocks
and then the original C implementation is used, e.g.,
the C functions as well as C strings. In contrast to
that, the LLM translation mostly uses the adequate
Rust-specific language features. It creates “safe” code
whenever possible, which enables much stronger mem-
ory safety checks by the compiler. It can also produce
code in different flavors, e.g., you can ask the LLM to
generate the code in a more functional style. However,
there are also some disadvantages. The LLM-based
approach sometimes fails to use the right types, e.g.,
built-in types of Rust. Moreover, it has problems with
correctly translating global variables from C, which
basically do not exist in Rust. This means that in
many cases, the proposed code is not even compil-
able. Thus, the LLM-based translation often requires
significant manual clean-up work or additional inter-
action with the LLM to get to a correct translation.

Another issue for current models arises with longer
functions or even whole code bases that shall be trans-
lated. Due to the limited context size of current
LLMs, they can only deal with text of limited size. For
example, the version of GPT-4 we used has a context
size of 8,192 tokens, which often means for the transla-
tion tasks that only functions on the order of 100 lines
of code can be translated at once. Furthermore, LLMs
have a random component: you get different results
for the same prompt each time, even with the lowest
possible temperature. This means when translating
pieces of code iteratively (to deal with limited context
size), these fragments do not necessarily fit together.
Again, this results in manual work, as identifiers may
be renamed differently, different types may be used,
etc. Therefore, it is hardly possible to use LLMs for
translating entire code bases without additional mea-
sures2. You must at least provide detailed instructions
on how to deal with certain constructs, like global
variables, to get a more consistent and syntactically

1https://c2rust.com/
2See Outlook below for comments on current developments.



and semantically correct set of translated functions
and data structures.

Overall, LLMs deliver very promising translation
results for small code snippets or individual func-
tions. However, current models with context limits
are hardly usable for translation of larger code bases.

2 Other Reengineering Tasks

Besides language translation, LLMs can support in
many other code-related tasks [1, 5]. When asking
GPT to propose software refactorings for a given
piece of code, it usually comes up with a very generic
list of things that could be done: Choose better iden-
tifier names, split the function into smaller ones, etc.
However, when asking it to perform these refactor-
ings on a concrete piece of code, its capabilities are
quite limited. While simple things such as the intro-
duction of better identifier names often works quite
well if the code is sufficiently self-explanatory, more
sophisticated refactorings like extracting methods fail
completely or deliver incomplete code. For performing
such refactorings, the classical approach still seems to
be the better choice.

LLMs can also be asked to explain code, so they
can potentially help in program comprehension.
This works perfectly fine for well-known algorithms,
even if names of the functions and identifiers are ob-
fuscated. For custom code, you often get an expla-
nation that sounds reasonable, yet often the explana-
tion is either wrong or not helpful, as it then explains
the code line by line. Hence, this is not a big ad-
vancement compared to state-of-the-art code summa-
rization approaches on that level. Nevertheless, we
should mention that there were recently remarkable
advances in answering sophisticated questions about
a whole code base with long context models [3]. These
results are very encouraging and contrast our current
experiments on smaller models.

Finally, let use mention several further promis-
ing tasks for reengineering support. These include
automatic program repair [2], performance improve-
ment [1], as well as code search [5]. For a comprehen-
sive overview of the potential of LLMs for software
engineering tasks in general, we refer to Fan et al. [1].

3 Outlook

Predictions are hard, especially about the future. This
is particularly true in the fast-moving field of LLMs.
As such, current failing applications of LLMs in Soft-
ware Reengineering tasks may only be a current snap-
shot as technology evolves. As an example, we want
to highlight the rapid progress with respect to context
size. While the context size of current models may
limit the capabilities in program comprehension as
discussed above, recent demonstration of LLMs that
allow to feed a complete codebase into the LLMs have
shown remarkable capabilities [3]. It will be exciting
to see whether improvements in LLMs and systems

including LLMs can remedy current limitations. Nev-
ertheless, we need to consider how developers will in-
teract with such a system depending on the success
rate of queries and what we can learn from other en-
gineering fields that have seen similar increasing levels
of automation [4].

4 Conclusion

LLMs offer completely new possibilities for Software
Reengineering. Notably, they take a different ap-
proach compared to classical techniques and thus
provide different advantages, e.g., adapting to cod-
ing style. Moreover, LLM-based approaches outper-
form classical techniques on several benchmark tasks.
However, there are some open problems with these
approaches. For example, we mentioned scalability
above. More substantially, there is in general a lack
of any guarantee about the result quality. This lack of
guarantees is however an inherent property of any AI
approach, and thus we – as a software (re-)engineering
community, probably have to identify additional (non-
AI) measures to address it. For now, LLMs are a pro-
grammer’s companion that can be used to generate
proposals. The developers must be in the loop and
check if the result is really what they wanted. This
interaction between the developer and the companion
and corresponding increasing levels of automation [4]
is an important challenge and may require even deeper
skills from the developer.
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