
Architecture Modeling of Distributed and Concurrent Software Systems 

 

Peter Klein, Diss. RWTH Aachen 

Aachener Berichte zur Informatik Vol 31, Verlag Mainz, Aachen, 2000 

 

This dissertation is devoted to the topic of architecture modelling for software systems. The 

architecture describes the structural composition of a system from components and 

relationships between these components. Thereby, it provides a basis for the system’s 

realization on technical as well as on organizational level. 

In order to define a conceptual frame and a suitable vocabulary for this working area, we 

present the architecture description language MoDeL (Modular Design Language). By 

selecting and combining modelling concepts which proved to be helpful for the design of 

software systems, this approach is integrative and pragmatic: It unites different realization 

paradigms (structured, object-oriented), different levels of granularity (overall system, 

subsystem, modules, types and operations), different kinds of abstractions (functional/data, 

types/objects etc.) without falling into a loose collection of diagram languages. 

Considering an architecture as a construction plan in a cooperative, creative, and dynamic 

software development process, the necessity arises to allow flexible adaptations with respect 

to given constraints, e.g. performance, interaction with legacy systems, integration of external 

(sub-)systems, distribution in a network etc. On one hand, a clean structure is required to 

make the architecture in itself and its parts understandable, robust, maintainable, and reusable. 

On the other hand, it has to be dealt with that a realistic software development process may 

need divergence from the desired structure. A fundamental notion in this dissertation therefore 

is to consider a clean logical architecture as well as concrete architectures reflecting 

respective modifications as individual results of architecture modelling. Furthermore, 

transformation steps describing the changes induced by a particular realization constraint 

contain valuable modelling knowledge as well. If possible, this knowledge should be 

formalized to make it reusable. 

A second basic aspect results from the proposition to separate the working areas of 

architecture modelling and of implementation, i.e. not to anticipate the steps during 

component development (selection of data structures, algorithms etc.) on architecture level. 

However, this cannot be avoided altogether as an architecture constrains the choice of 

possible realizations, e.g. by supplying certain underlying services. In order to allow the 

architect precise explanations of the static structure without giving up the distinction between 

architecture and realization, our approach supports the annotation of dynamic runtime 

behavior as well as static component semantics within certain limits. 

In sum, we distinguish a separation in two dimensions, namely logical and concrete level on 

one hand and static and dynamic level on the other. These are described by respective 

sublanguages of the MoDeL language. From the broad range of adaptation steps towards a 

concrete architecture, we particularly focus on the specification of concurrency and 

distribution. This requires some new language concepts for fixing control flows, 

synchronization schemes etc. in the architecture. 

Apart from the presentation of MoDeL and its sublanguages, this dissertation contains two 

case studies. These demonstrate the use of the language in different situations, but they also 

contribute to the discussion of “reference architectures”. 

Firstly, we present the detailed architecture of a software development environment which was 

developed in connection with the MoDeL language. This environment, the Analysis and 

Development Tool adt, is based on the experiences of the IPSEN project and supports the 

creation of MoDeL specifications. These specifications can be kept consistent with the source 



text by fine-grained incremental propagation of changes from the architecture specification 

into source code files and vice versa. Additionally, the environment is open for the embedding 

of external tools, noticeably for programming activities (editor, compiler, debugger etc.). This 

facilitates an architecture-centered software development process by supporting design and 

realization under a consistent structural view. 

The second architecture was developed in the course of the collaborative research center 476 

“IMPROVE”. This project aims at the improvement of the information technology support of 

development processes in the application area of process engineering. A prototype of an 

integrated development environment has been implemented which extends existing 

development tools with new functionality, thereby enhancing single development steps as 

well as coordination and cooperation in the overall development process. 

While the adt prototype allows for a detailed discussion of logical architecture concepts, the 

focus of the CRC prototype is the general design under consideration of constraints. 

Particularly, the a-posteriori integration of existing development tools for process 

engineering by new information technology concepts is discussed. 

 

Referee: Prof. Dr.-Ing. M. Nagl 

Coreferee: Prof. Dr. rer. nat. C. Lewerentz 

Oral exam: July 17, 2000 

 


